New Physics

Dayong Wang

On behalf of BESIII New Physics group

Peking University

Symposium on 30 years of BES Physics

Sep 6 2019

Standard Model of particle physics

30 years of BES programs contribute a lot from the rich potential of τ -c region

- Rich of resonances, charmonia and charmed mesons.
- Threshold characteristics (pairs of τ, D, D_s, charmed baryons...).
- □ **Transition** between perturbative and nonperturbative **QCD**.

Standard model of particle physics

Search for new physics beyond SM

ار م 10 م /

10-

10

10

big questions to address beyond SM:

- Why three generations?
- Mass hierarchy among fermions?
- Why SU(3)xSU(2)xU(1)?
- Why B and L number conserved?
- Why C, P, CP symmetry violated?
- What is the origin of neutrino mass?
- What is dark matter ?
- Matter-antimatter asymmetry in Universe?

Intensity frontier expts come into play: BES

2019/9/6 BES30YearSymposium: NP

Search for the lepton flavor violation processes $J/\psi \rightarrow \mu \tau$ and $e\tau$

η /η' invisible decays: BESIII (2013)

Only 2.3% of the full data set

From BESI/II to BESIII

~ 1.3B +8.7B J/ψ ~ 180×BESII ~ 0.5 B ψ (3686) ~ 24×CLEO-c ~ 2.9/fb ψ (3770) ~ 3.5×CLEO-c

Major datasets for NP so far

high lumi, large datasets, hermetic detector with good performance and clean environment at BESIII are helpful for probing BSM physics

competitive in channels with low energy electron/photons, neutrons, pi0's

η / η' invisible: efficiencies

	Value		
Quantity	η	η^\prime	
$\overline{n_{\mathrm{UL}}^{\eta}(n_{\mathrm{UL}}^{\eta'})}$	3.56	5.72	
$\boldsymbol{\epsilon}_{\eta} \left(\boldsymbol{\epsilon}_{\eta^{\prime}} \right)$	23.5%	23.2%	BESII:2006
$n^{\eta}_{\gamma\gamma} \ (n^{\eta'}_{\gamma\gamma})$	1760.2 ± 49.3	71.6 ± 13.2	
$oldsymbol{\epsilon}^{\eta}_{\gamma\gamma}~(oldsymbol{\epsilon}^{\eta'}_{\gamma\gamma})$	17.6%	15.2%	
$\sigma_{\eta}^{\mathrm{stat}}~(\sigma_{\eta'}^{\mathrm{stat}})$	2.8%	18.5%	
$\sigma_{\eta} \left(\sigma_{\eta'} ight)$	8.1%	21.6%	
Thanks to the much improve	d EMC	e	
Quantity	η	η'	BESIII: 2013
$\overline{N^{\eta}_{\gamma\gamma}(N^{\eta'}_{\gamma\gamma})}$	13390 ± 136	400 ± 25	
$N_{ m bkg}^{ m non-\phi\eta}(N_{ m bkg}^{ m non-\phi\eta'})$	2514 ± 64	1482 ± 46	
$N_{ m bkg}^{ m non-\phi}(N_{ m bkg}^{ m non-\phi})$	1132 ± 70	10 ± 15	
$N_{ m bkg}^{ m non-\eta}(N_{ m bkg}^{ m non-\eta'})$	313 ± 54	159 ± 26	
$oldsymbol{\epsilon}_{\gamma\gamma}^{\eta}(oldsymbol{\epsilon}_{\gamma\gamma}^{\eta'})$	36.3%	31.7%	

Systematic errors

	Sys. error (%)	
Source of uncertainties	η	η'
PDF shapes in the ML fit	3.4	7.3
MC statistics	1.0	1.0
Requirement on N _{BSC}	5.0	5.0
Photon efficiency	4.0	4.0
4C fit for $\eta(\eta') \to \gamma \gamma$	1.0	5.2
Background shape for $\eta(\eta') \rightarrow \gamma \gamma$	2.0	1.0
Total	7.7	11.1

	Systematic	c error (%
Source of uncertainties	η	η'
Requirement on N_{shower}	0.3	0.3
ϕ mass window	1.5	1.5
$J/\psi \rightarrow \gamma \eta_c, \ \eta_c \rightarrow K_L K^{\pm} \pi^{\mp}$ background	1.2	
Background shape of $J/\psi \rightarrow \phi f_0(980)$		1.0
Background shape of $J/\psi \rightarrow \phi K_L K_L$		2.9
4C fit for $\eta(\eta') \rightarrow \gamma \gamma$	0.4	0.8
Photon detection	2.0	2.0
Signal shapes for $\eta(\eta') \rightarrow \gamma \gamma$	0.1	1.0
Background shape for $\eta(\eta') \rightarrow \gamma \gamma$	0.1	0.6
Total systematic errors	2.8	4.1
Statistical error of $N^{\eta}_{\gamma\gamma}(N^{\eta'}_{\gamma\gamma})$	1.0	6.0
Total errors	3.0	7.4

BESII 2006 BESIII 2013

Simulation/reconstruction and detector
performance understanding is greatly improved

BESIII NP Group established in 2015

- Organized efforts with unified standards, shared tools, methods and studies. Open for all collaborators.
- ~20 publications in total, another ~20 active analyses
- Workshops: ideas, discussions, communication with theorists
 - 2015.3.27 28, Nanjing U: 19
 - 2015.12.22 23, USTC: 22
 - 2016.4 Nanjing U: 24
 - 2016.12 Peking U : 52
 - 2017.9 UCAS: 33
 - 2018.10 USC : 35
 - 2019.5.24-26, USTC: 50

PKU workshop, Dec. 2016

Stable team ~20 active members from all over: Chinese universities, IHEP and foreign institutes

USC workshop, Oct. 2018 Destination in the action in the

General strategy for NP searches

New physics effects may be very small.

SM contribution is dominant.

SM contribution is highly suppressed.

SM contribution is forbidden.

Probing NP: wide searches at BESIII

- C1:the processes that are allowed in the SM, but rare
 - Charmonia weak decays
 - Charm meson rare radiative and leptonic decays
 - Very rare processes beyond prediction
- C2:processes that are not allowed in the SM at tree level
 - FCNC processes
 - Violation of CP and other symmetries in hyperon decays and D-mixing
 - Charged lepton flavor violation(CLFV) processes
- C3:processes that are not allowed/existent in the SM
 - C-violation EM processes and C and CP violation decays
 - Lambda oscillations: from Jpsi->ΛΛbar, pKΛbar
 - LNV/BNV processes: indirect probe of exotic mediators
 - Exotic resonance search: light Higgs/Dark photon etc
 - Processes with Invisible signatures
 - Off-resonance searches

J/ψ weak decays: semileptonic

PHYSICAL REVIEW D90,112014 (2014)

BESII: PLB 639,418 (2006)

J/ψ weak decays: hadronic

 $\mathcal{B}(J/\psi \to D_s^- \rho^+) < 1.3 \times 10^{-5}$

 $\mathcal{B}(J/\psi \rightarrow \bar{D}^0 \bar{K}^{*0} + \text{c.c.}) < 2.5 \times 10^{-6}$

PHYSICAL REVIEW D89,071101(R) (2014)

BESII: PLB 663, 297(2008)

Dayong Wang

Rich samples of secondary particles η and η'

η and η' yields with J/ψ data set

Now we have 10B J/ψ on tape!

Hai-

-bo Li, <i>Front. Phys.</i> 1	2, 121301 (2017)
--------------------------------------	-------------------------

Decay mode	$\mathcal{B}(\times 10^{-3})$) $N_B \; (\times 10^6)$
$J/\psi \to A\bar{A}$	1.61 ± 0.1	$5 16.1 \pm 1.5$
$J/\psi \to \Sigma^0 \bar{\Sigma}^0$	1.29 ± 0.0	9 12.9 ± 0.9
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	1.50 ± 0.2	$4 15.0 \pm 2.4$
$J/\psi \to \Sigma(1385)^- \bar{\Sigma}^+$ (or c.c.)	0.31 ± 0.0	$5 3.1 \pm 0.5$
$J/\psi \to \Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$ (or c	e.c.) 1.10 ± 0.1	$2 11.0 \pm 1.2$
$J/\psi \to \Xi^0 \bar{\Xi}^0$	1.20 ± 0.2	4 12.0 ± 2.4
$J/\psi \to \Xi^- \bar{\Xi}^+$	0.86 ± 0.1	$1 8.6 \pm 1.0$
$J/\psi \to \Xi (1530)^0 \bar{\Xi}^0$	0.32 ± 0.1	$4 3.2 \pm 1.4$
$J/\psi \to \Xi(1530)^- \bar{\Xi}^+$	0.59 ± 0.1	$5 5.9 \pm 1.5$
$\psi(2S) \to \Omega^- \bar{\Omega}^+$	0.05 ± 0.0	1 0.15 ± 0.03
Decay mode	$\mathcal{B}(\times 10^{-4})$	$N_B \ (\times 10^6)$
$J/\psi \to p K^- \bar{\Lambda}$	8.9 ± 1.6	8.9 ± 1.6
$J/\psi \to \Lambda \bar{\Lambda} \pi^+ \pi^-$	43 ± 10	43 ± 10
$J/\psi \to p K^- \bar{\Sigma}^0$	2.9 ± 0.8	2.9 ± 0.8
$J/\psi \to A \bar{\Sigma}^- \pi^+$ (or c.c.)	8.3 ± 0.7	8.3 ± 0.7
$J/\psi \to \Lambda \bar{\Sigma}^+ \pi^{-*}$ (or c.c.)	8.3 ± 0.7	8.3 ± 0.7
$J/\psi \to pK^- \bar{\Sigma}(1385)^0$	5.1 ± 3.2	5.1 ± 3.2
2019/9/6 BES30YearSymposium: NP		

Decay mode	current		tion
$\Lambda \to n e^+ e^-$	10-0	- 10 -	
$\varSigma^+ \to p e^+ e^-$	< 7	< 0.4	
$\Xi^0 \to \Lambda e^+ e^-$	7.6 ± 0.6	< 1.2	
$\Xi^0 \to \varSigma^0 e^+ e^-$		< 1.3	FCNC
$\Xi^- ightarrow \Sigma^- e^+ e^-$		< 1.0	virtual-v
$\Omega^- ightarrow \Xi^- e^+ e^-$		< 26.0	nonquin
$\Sigma^+ o p \mu^+ \mu^-$	$(0.09\substack{+0.09\\-0.08})$	< 0.4	penguin
$\Omega^-\to \Xi^-\mu^+\mu$	u ⁻ –	< 30.0	
$\Lambda \to n \nu \bar{\nu}$	_	< 0.3	
$\Sigma^+ \to p \nu \bar{\nu}$	_	< 0.4	
$\Xi^0\to A\nu\bar\nu$	_	< 0.8	FCNC
$\Xi^0\to \varSigma^0\nu\bar\nu$	_	< 0.9	virtual-Z
$\Xi^-\to \Sigma^- \nu\bar\nu$	_	_*	nenquin
$\Omega^-\to \Xi^-\nu\bar\nu$	_	< 26.0	
$\Sigma^- \to \Sigma^+ e^- e^-$	2	< 1.0	
$\varSigma^- \to p e^- e^-$	_	< 0.6	
$\Xi^- \to p e^- e^-$	_	< 0.4	
$\Xi^- \to \Sigma^+ e^- e^-$	e ⁻ –	< 0.7	
$\Omega^- \to \Sigma^+ e^- e^-$		< 15.0	
$\Sigma^- \to p \mu^- \mu^-$	_	< 1.1	∆L=2
$\Xi^- \to p \mu^- \mu^-$	< 0.04	< 0.5	process
$\Omega^- \to \Sigma^+ \mu^- \mu^-$	u ⁻ –	< 17.0	•
$\Sigma^- ightarrow pe^- \mu^-$	_	< 0.8	
$\Xi^- \to p e^- \mu^-$	_	< 0.5	
$\Xi^- ightarrow \Sigma^+ e^- \mu$	ι —	< 0.8	
$\Omega^- \to \Sigma^+ e^- \mu$	ι —	< 17.0	16

FCNC is suppressed in SM

PHYSICAL REVIEW D

VOLUME 2. NUMBER 7

1 OCTOBER 1970

Weak Interactions with Lepton-Hadron Symmetry*

 $\psi(3686) \rightarrow \Lambda_c^+ \bar{p} \ e^+ e^-$ search **PRD 97, 091102(2018) (RC): first search** D \rightarrow h(h')ee search **PRD 97, 072015 (2018):** 2 orders improvement

Dayong Wang

Rare charm decays

Search for Charge flavor lepton violation(cFLV) process

Considering neutrino mixing, extended vSM

е

q

Possible CLFV from NP models

н

Extended higgs models

J/ψ → eµ: Unblinded Data and Results

Search for LNV: $D \rightarrow K \pi e^+ e^+$

- Lepton number violating(LNV) process (ΔL =2)
 - possibly due to a single Majorana neutrino exchange
- The best BR limit around 10⁻⁴ ~10⁻⁵ level by E791[PRL 86, 3969(2001)].
- BESIII has improved them to ~10⁻⁶
- Further constrain mass-dependent $D \rightarrow Ke^+ v_N(\pi e^+)$ decay
 - constrain mixing matrix element |V_{eN}|²
- More channels could be probed with future charm dataset

PRD 99, 112002(2019)

Light Higgs search with $225M J/\psi$)

$$\frac{\sigma_i(e^+e^- \to \gamma' \gamma_{\rm ISR} \to l^+l^- \gamma_{\rm ISR})}{\sigma_i(e^+e^- \to \gamma^* \gamma_{\rm ISR} \to l^+l^- \gamma_{\rm ISR})} = \frac{N_i^{\rm up}(e^+e^- \to \gamma' \gamma_{\rm ISR} \to l^+l^- \gamma_{\rm ISR})}{N_i^{\rm B}(e^+e^- \to \gamma^* \gamma_{\rm ISR} \to l^+l^- \gamma_{\rm ISR})} \cdot \frac{1}{\epsilon} = \frac{3\pi \cdot \varepsilon^2 \cdot m_{\gamma'}}{2N_f^{l+l^-} \alpha \cdot \delta_m^{l+l^-}} \cdot \frac{1}{\epsilon} = \frac{3\pi \cdot \varepsilon^2 \cdot m_{\gamma'}}{2N_f^{l+l^-} \alpha \cdot \delta_m^{l+l^-}} \cdot \frac{1}{\epsilon} = \frac{3\pi \cdot \varepsilon^2 \cdot m_{\gamma'}}{2N_f^{l+l^-} \alpha \cdot \delta_m^{l+l^-}} \cdot \frac{1}{\epsilon} = \frac{3\pi \cdot \varepsilon^2 \cdot m_{\gamma'}}{2N_f^{l+l^-} \alpha \cdot \delta_m^{l+l^-}} \cdot \frac{1}{\epsilon} = \frac{3\pi \cdot \varepsilon^2 \cdot m_{\gamma'}}{2N_f^{l+l^-} \alpha \cdot \delta_m^{l+l^-}} \cdot \frac{1}{\epsilon} = \frac{3\pi \cdot \varepsilon^2 \cdot m_{\gamma'}}{\epsilon} =$$

Dark photon search results from BESIII

2019/9/6 BES30YearSymposium: NP

Future of BESIII new physics: Whitepaper

Exotic Decays and New Physics

	1.1	Introduction		
	1.2	.2 Rare decays of charmonia and charmed hadrons		
C110	6	1.2.1 Weak decays of charmonium states		
		1.2.2 Rare radiative and rare leptonic $D_{(c)}$ decays	./	Demonstrators not final
	1.3	<i>CP</i> violation in baryon decays and charm mixing	v	Demonstrators, not final
	1.0	1.31 Probing <i>CP</i> asymmetry in Λ decays		nor exclusive, but open
		1.3.2 Constraint on BNV from $\Lambda = \overline{\Lambda}$ Oscillation	/	Further or DECIII
		1.3.2 Constraint on Div from $A = A$ Oscillation	V	Further explore BESIII
		1.3.5 More symmetry violation in hyperon decays		NP potential
	1 /	Changed Lepton Flower (Number) Violation decours		
	1.4	Charged Lepton Flavor (Number) violation decays		Near-threshold
Ca		1.4.1 Decays of $J/\psi, \psi(2S) \rightarrow l_1 l_2, l_1 l_2 \gamma \dots$		production
CZ		1.4.2 $\chi_c \to l_1 l_2$ via photon tagging in $\psi(2S) \to \gamma \chi_c, \gamma \eta_c$		
Ca		1.4.3 (radiative) Leptonic decays of $D^0 \to l_1 l_2, \gamma l_1 l_2$		High lumi
C3		1.4.4 CLFV and LNV $D_{(s)}$ decays with light mesons		✓ Clean signals
	1.5	Searches for light (invisible) NP particles		
		1.5.1 Physics of the Dark Sector	\checkmark	There may appear new
C 3		1.5.2 (radiative) Invisible decays of charmonia		ideas and surprises
		1.5.3 Invisible decays of D mesons		lacas and sorprises
		1.5.4 Invisible decays of light mesons		
	1.6	Off-resonance searches		
-		1.6.1 Bare charm production: $e^+e^- \rightarrow D^*(2007)$		
C3		1.6.2 Dark photon and dark Higgs searches		
		163 Axion-Like particles with displaced vertex		
		1.6.4 Sourchos for fractionally charged particles		
		1.0.4 Dearches for fractionally charged particles		

Summary

- There were already great NP search efforts with BESII
- BESIII continue to perform wide range study of exotic decays and new physics. ~20 publications, with many first search or best constraint
- BESIII has great potential with unique datasets and analysis techniques ...More to come!
- Open for new ideas and surprises!

Summary

- There were already great NP search efforts with BESII
- BESIII continue to perform wide range study of exotic decays and new physics. ~20 publications, with many first search or best constraint
- BESIII has great potential with unique datasets and analysis techniques ...More to come!
- Open for new ideas and surprises!

Summary

- There were already great NP search efforts with BESII
- BESIII continue to perform wide range study of exotic decays and new physics. ~20 publications, with many first search or best constraint
- BESIII has great potential with unique datasets and analysis techniques ...More to come!
- Open for new ideas and surprises!

Happy 30-year anniversary Thank all make it possible & March for the bright future

Comparison and prospects

PhysRevD(2016).93.051102

Uncertainties independent of fitting procedure

Source	Relative uncertainty (%)
Photon reconstruction	2.0
$M_{\rm BC}^{\gamma\gamma}$ requirement	3.1
ST D^0 yields	1.0
Total	3.8

Detailed projection study is needed to check what is the critical points for DDbar sample size

Search for C-violation EM processes

cFLV searches in J/ψ : Prospects

