

BESIII Software and Computing and Upgrade

Sun Shengsen

Symposium on 30 years of BES Physics Beijing, September 6, 2019

- Data-Flow Processing Framework
- Physics Generator
- Detector Simulation
- Event Reconstruction / Calibration
- Data Analysis Toolkit
- Visualisation
- Data Organization, Management and Access
- Facilities and Distributed Computing

BESIII Offline Software System (BOSS)

 BESIII offline software system (BOSS), is an offline data processing software system which is developed based on GAUDI framework.

- External Libs: Geant4, ROOT, GDML, MySQL,
- Operation System: Scientific Linux 6, GCC 4.6.3
- Simulation, reconstruction/calibration, and data analysis algorithms are core software for data processing and physics analysis, software framework provides event data service and constants data service

GAUDI Framework & Software Configuration Management

- GAUDI is adopted as the software framework — a skeleton of an application into which developers plug in their code and provides most of the common functionality.
- Clear separation between "algorithms" (key components) and "data" ("persistent data" and "transient data")

- CMT (Configuration Management Tool)
- Structure software development (concepts of areas, packages, versions, constituents)
- Operates the software production (management, build, import/export, etc...)

Offline Data Processing

- HEPMC Data: Kinematic information
- RAW Data
 - Delivered by DAQ
 - > Byte stream format
- Simulated Event Data
 - Contain digits, hits and other MC truth information
 - > Ascii file format
- REC & DST Data
 - > Reconstructed data is event data
 - DST data is reduced event representation suitable for analysis
 - > Both in ROOT format

Physics Generator

- Simulation = Physics Generator + Detector Simulation
- Charmonium decay process
 - KKMC+BesEvtGen: charmonium decay events
 - KKMC: e^+e^- annihilate, Initial state radiation process (ISR) and Beam energy spread

Phokahara

• Twogam

- BesEvtGen: charmonium decays, final state radiation (FSR)
- PYTHIA: Lundcharm unknown decays
- PHOTOS: estimate the size of the QED bremsstrahlung
- QED process
 - Bhlumi/Bhwide

 - Babayaga
- Cosmic Ray

Detector Simulation Detector Description

- Based GDML (Geometry Description Markup Language), a kind of XML developed by GEANT4 group.
- Accurate detector description of a series of irregular and complex structure is realized.
- A uniform geometric data service is developed based on GDML format.

- BOOST (BESIII Objected Oriented Simulation Tool)
- Digitization
- Realization: mixing rangdon trigger
- MC Tuning

MD Hit Number

1000

NHits

EMC Shower Number

8000

6000 4000 2000

100

Entries

Readout electronics simulation for EMC

(a)

3000

TOF Hit Distribution

Id

MUC Hit Number

 $\times 10^3$

100

Event Reconstruction

- MDC Reconstruction
- Track finding
 - TrkReco Segment Finding: Conformal Transform
 - MdcPatRec Segment Finding: Pattern matching
- Track fitting: least square method
- Kalman filter method
 Recursive least squares estimation

Event Reconstruction

- TOF Reconstruction
 - T-Q match
 - Track-TOF signal match
- EMC Reconstruction
 - Cluster finding
 - Cluster splitting
- MUC Reconstruction

Calibration

- MDC Calibration
 - Residual
 - Drift time and distant
 - Wire position, t0, propagation
 - Time walk effect
- Alignment

Calibration

- dE/dx calibration
 - Track path length
 - Single wire gain and run/atmospheric pressure gain
 - Non-uniformity of charge collection
 - Space-charge effect
- TOF calibration
 - Time walk effect

$$t_{cor} = P_0 + \frac{P_1 + P_2 \times z}{\sqrt{Q}} + \frac{P_3}{Q} + P_4 \times z + P_5 \times z^2 + P_6 \times z^3$$

- EMC calibration
 - Energy calibration of detection unit
 - Absolute photon energy calibration

$$\chi^{2} = \sum_{k=1}^{N} \frac{E_{exp}^{k} - \sum_{i}^{5 \times 5} g_{i} \cdot E_{i}^{elec}}{\sigma(\theta, \phi)}$$

Resolution(%)

BESIII Detector Performance

	MDC	MDC	EMC	
Exps.	Spatial resolution	dE/dx resolution	Energy resolution	
CLEOc	110 μm	5%	2.2-2.4 %	
Babar	125 μm	125 μm 7 %		
Belle	130 μm	5.6%	2.2 %	
BESIII	115 μm	<5% (Bhabha)	2.4%	

	TOF		
Exps.	Time resolution		
CDFII	100 ps		
Belle	90 ps		
BESIII	68 ps (BTOF)		
	60 ps (ETOF)		

MUC: Efficiency ~ 96%

BG level: $< 0.04 \text{ Hz/cm}^2(B-MUC), < 0.1 \text{ Hz/cm}^2(E-MUC)$

Data Analysis Toolkit Particle Identification

• Particle identification combine TOF information, dE/dx measurements, energy deposits in the EMC, and MUC information.

Data Analysis Toolkit Kinematic Fit and Vertex Fit

- Physics laws are employed to constraint the interaction or decay process to improve the accuracy of measurements.
- Kinematic Fit: Lagrange multiplier method has been implemented.
- Vertex Fit: Kalman filter method and global least squares method, improve the precision and suppress the background.

Visualisation

- Event displays are the main tool to explore experimental data at the event level and to visualize the detector.
- Detector development, monitoring, event generation, reconstruction, detector simulation, data analysis, as well as outreach and education.

 Symposium on 30 years of BES Physics

Computing Platform for BESIII Data Process

Based on Open Source and NO Commercial Software

BESIII CLUSTER Computing

- Main Computing resources support 1000+ BESIII physicists
- 2008: Torque Maui cluster
 - Several job queues
- 2012: Dynamic job scheduling policy applied
 - BESIII job slots utilization reach to nearly 100%
- 2016: Migrated to HTCondor cluster
 - Fast job scheduling
 - More than 10,000 job slots
- 2017: Fair share resource pool policy applied
 - Run BESIII job on the free job slots from other experiments
- 2018: HPC Cluster established focusing on partial wave analysis & machine learning
- 2019: Virtual Computing applied to BESIII clusterhengsen Symposium

Massive Hierarchical Storage System

- BESIII Disk File system is based on Lustre
 - Capacity: 6.6 PB, Bandwidth: ~24GB/s
 - 200,000,000 files
 - Self developed monitor & diagnosis tool :
- BESIII Tape management based on CASTOR
 - Capacity: ~5PB with replica
 - 2 GB/s access bandwidth
- Cloud storage and data agency supported
 - Singe data view

Network development for BESIII

- 2008: 10Gb/s Ethernet for Computing Network, and 1Gbps internet connection
- 2011: 40Gb/s Ethernet for Computing Network, and 10Gbps internet connection IPv4/IPv6 dual-stack supported
- 2012: WIFI supported for campus network
- 2015: eduroam supported for campus network
- 2016: 160Gb/s Ethernet for Computing Network
 2X10Gbps internet connections
- 2018: LHCONE member
 4X10Gbps internet connections

BESIII Distributed Computing

- In 2013, a distributed computing system was built based on DIRAC, which realized the integration of cluster, grid and cloud resources
 - The resource volume exceeded 3500 cores, and 18 domestic and foreign sites joined
 - Network bandwidth between IHEP and European, American and domestic universities is 10Gb/s
 - Realize reasonable and effective allocation of resources, that is, make full use of idle time of resources without affecting local users
 - It provides a unified platform, so that experimental users can easily use distributed heterogeneous computing resources without geographical restrictions
- The grid storage system and data transmission system are established to realize the high-speed data sharing among the cooperative units of the experiment
 - The total storage capacity reaches ~500TB, and the transmission speed exceeds 1Gb/s
- Since 2014, distributed computing has contributed about 6 million CPU hours to the experiment, and the data transmission volume between experimental cooperative units has exceeded 800TB

BESIII Software Upgrade Tracking based on Hough Transform

BESIII Software Upgrade MRPC Endcap TOF Software

Time-TOT raw-t_{exp} /ns 8.5 7.5 TOT /ns

Endcap TOF upgrade in Oct2015

Multi-peak structure

Time difference with calibration

Comparison with International experiments

Acceleratro	Detector	Time resolution (π meson)
RHIC	STAR	74–94ps
LHC	ALICE	86ps
BEPCII	BESIII	65ps

pion 0.8GeV/c 65ps Designed Target: momentum

Sun Shengsen

Sun

0.8GeV/c π meson overall 80~100ps

BESIII Software Upgrade Cylindrical GEM Inner Tracker

BESIII is building a cylindrical GEM detector (CGEM-IT) to replace the BESIII Inner MDC to recover some efficiency loss due to aging and to improve the secondary vertex resolution.

- Low Material budget ≤ 1.5% of X₀ for all layers
- High Rate capability: ~10⁴ Hz/cm²
- Coverage: 93%
- Spatial resolution $\sigma_{r\phi}$ ~130 μm in 1 T magnetic filed
- Operation duration at least 5 years

The CGEM is co-funded by the European Commission Research and Innovation Staff Exchange (RISE) project 2015-2018.

Formation of a consortium: IHEP, INFN (Ferrara, Frascati, Perugia and Torino), Mainz, Uppsala.

26

BESIII Software Upgrade CGEM Software: Simulation

Detector Description

Full Digitization (simulation of detector response)

BESIII Software Upgrade CGEM Software: Reconstruction, Calibration and Alignment

BESIII Software Upgrade CGEM Software Performance

- Software version: CGEMBOSS665b, CGEMBOSS665c
- Validation
- Tracking efficiency
- Spatial resolution

BESIII Software Upgrade Constant-Current Pattern of Accelerator

- A nearly constant beam current results in a high integrated luminosity
- Data quality is satisfied for physics analysis?
- Solve the confliction between long-time run and precise detector calibration.

BossRelease	DataType	CalibConst	RunFrom	RunTo	BossVer	eventFrom	eventTo
7.0.5	dE/dx	File1	8093	9025	7.0.0	_	_
7.0.5	dE/dx	*****	•••••				
7.0.5	dE/dx	File1	80000	80000	7.0.5	0	10000
7.0.5	dE/dx	File2	80000	80000	7.0.5	10001	20000
7.0.5	dE/dx	File3	80000	80000	7.0.5	20001	30000
7.0.5	dE/dx	File1	80001	80001	7.0.5	0	12345
7.0.5	dE/dx	File2	80001	80001	7.0.5	12346	54321
7.0.5	Mdc	File1	80000	82000	7.0.5	_	_

Event Time Stamp

Thanks all BESIII Colleagues for Contributions to BESIII Software and Computing!
I must apologize for missing many important achievements and outstanding contributions in this slides!

