Direct measurements of the weak decay Constants $f_{D_S}(f_D)$, and $D_S(D)$ branching fractions to $\mu\nu$, $\Phi\pi$, $eX(\mu\nu)$ at BES (Initial Charm Program)

> Changchun Zhang IHEP, Beijing

Symposium on 30 years of BES Physics 5-6 Sep, 2019, IHEP, Beijing, China

Motivation for f_{Ds}(f_D) measurement

➢ Large discrepancies in f_{Ds} , from 90 to 350 MeV, remain between various theoretical approaches:

\checkmark	Lattice QCD	\checkmark	Factorization Hypothesis
\checkmark	Potential Model	\checkmark	Relativistic QM

- ➢ f_B determination is of considerable importance, since it relates B_0 - $\overline{B_0}$ mixing to CKM matrix elements
- > The ratios f_{Ds} : f_D : f_B are more reliably predicted

Precise value of the decay constant $f_{Ds}(f_D)$ provides

unambiguous test of lattice QCD

2

discrimination among models and reliable improvement of f_B estimates

Proposal and Approval

- Experimental study of D_S physics and current status (Chao-His Chang, C.C. Zhang, Xue-Qian Li, Mar. 1990)
- Proposal of *D_S* physics study at BES/BEPC (Chao-His Chang, C.C. Zhang, Oct. 1990)
- *D_S* physics study at BES/BEPC
 (M. Fero and W. Toki, Jan. 1991)

3

Common consensus on D_s run among the BES collaborators of both China and US had been reached.

The proposal of D_s run approved by BES in Sept. 1991
 D_s data taking at BES/BEPC started in Feb. 1992

c.m. energy for Ds run

Charm strange contributions to R in the couple-channel model

- $\checkmark \sigma(D_S \overline{D_S}) = 750 \text{ pb}, \text{ Ecm} = 4.03 \text{ GeV}$
- ✓ $\sigma(D_S * \overline{D_S}) = 900 \text{ pb}, \text{ Ecm} = 4.14 \text{ GeV}, (MarkIII, 6.3 \text{ pb}^{-1})$
- $\checkmark \sigma(D_S * \overline{D_S *}) = 1100 \text{ pb}, \text{ Ecm} = 4.25 \text{ GeV}$

4

 \blacktriangleright Ecm = 4.03 GeV is chosen for BES D_s runs

✓ No production of both $D_S * \overline{D}_S$ and $D_S * \overline{D}_S *$

- \checkmark Narrow *Ds* mass resolution with no contribution from $D_{s}*$
- Avoiding heavy background from low energy photons
- ✓ 1-c fit requiring overall event four-momentum balance

No D_s signal at Ecm=4.04 GeV seen by DASP at DESY
 (R scan data)

first Ds signal at BES in 1992

D_S data taking started at BES/BEPC in Feb. 1992
 D_S → φπ signal observed in Apr. 1992
 First event of D_S → μ v decay observed in May 1992

A decision to keep D_s physics run is made at BES annual meeting in the summer of 1992

Ds data and its quality Check

> Total integrated luminosity for D_s data is 22.3 pb⁻¹

Year		D_S data		Data taking for other topics		
	$L_{int} (pb^{-1})$	Run time (day)	$L_{int} (pb^{-1})$ per month	BEPC machine study		
1992	3.22	65	1.5	Tau scan, 10^6 J/ ψ events		
1993	4.51	-	-	J/ ψ scan, 10 ⁶ ψ ' events		
1994	14.57	114	3.8	BEPC peak luminosity doubled		

Data quality check

6

Completed run-by-run for each of subdetectors

momentum (MDC),time(TOF),energy(BSC),position(μ-CTR),and their resolutions

- ✓ Number of events for $D^+ \rightarrow K^-\pi^+\pi^+$ decay after normalization
- ✓ Done by groups of data prod., calib., and phys. anal.

Careful study of $e/\pi/k/\mu$ identification

- For π/k identification, systematic offsets in t_{TOF} and dE/dx, (calibrated with e^+e^-), are corrected.
 - By taking into account of
 - type of hadrons π,k
 - momentum
 - 🗸 polar angle

Using pure hadron sample of $\checkmark J/\psi \rightarrow \omega \pi^+ \pi^-$ for π $\checkmark J/\psi \rightarrow \phi k^+ k^-$ for k

- ➢ e/µ identification: using joint confidence level with t_{TOF} , (dE/dx)_{MDC}, and E_{BSC} information
- For e^+e^- events, efficiency of e identification after $D_S \rightarrow \tau v$
 - \rightarrow e3v selection criteria is > 80% over full momentum range

Known π misidentified as e at a rate of $\approx 5\%$

For cosmic μ , efficiency of μ identification is $\approx 85\%$

Known π misidentified as μ is at a rate of $\approx 4\%$

Singly tagging of **D**_S**D**_S events

 \triangleright Singly tagged D_{s} decay to $\phi \pi$, $\overline{K} {}^{0}K$, $\overline{K} {}^{*0}K$ with $\phi \to K^+K^-$, $\overline{K}{}^0 \to \pi^+\pi^-$ and $\overline{K}{}^{*0} \to K^-\pi^+$

To suppress background from D^+ decays, \checkmark With 1-C fit requiring *Ds* candidate and requiring $\Delta E = |E_{\text{beam}} - E_{Ds}| < 50 \text{ MeV}$, where $E_{Ds} = \sum E_i$

recoil system to have equal mass, D_s mass resolution is 4 MeV

decay Constant $f_{DS}(f_D)$ and $D_S(D)$ branching fraction to μv

D_S leptonic decay candidates

 $> D_S$ leptonic decay are searched among recoil systems against singly tagged D_S candidates (incl. $\phi \pi$, $\overline{K}^0 K$, $\overline{K}^{*0} K$ decays)

The recoil system is required

- having a single, vertex-associated charged track
- carrying charge opposite that of D_s tag
- with no isolated photon
- \checkmark ID criteria of either e or μ is satisfied

Detection efficiencies and background

- \succ The efficiencies for D_s tagging and leptonic decay
 - $\checkmark 51\% \text{ for } D_S \rightarrow \mu\nu,$
 - 6.3% for $D_S \rightarrow \tau \nu$, $\tau \rightarrow \mu \nu \nu$
 - ✓ 8.2% for $D_S \rightarrow \tau \nu$, $\tau \rightarrow e \nu \nu$

Including the τ branching fractions

Rate of D_s decay to ev is negligible

Background mainly contributed from hadron misidentification

$$D_{S} \rightarrow K^{0}{}_{L}K, \ K^{0}{}_{L} \rightarrow \pi e\nu, \ \pi \mu\nu$$

$$D_{S} \rightarrow \tau\nu, \ \tau \rightarrow \pi\nu$$

- estimated with events which
 satisfy the lepton kinematic
 requirements but
- have recoil system as neither e nor μ

Background estimate

- 0.35 events for $D_s \rightarrow \tau \nu$, $\tau \rightarrow e \nu \nu$
- 0.20 events for $D_s \rightarrow \tau \nu, \tau \rightarrow \mu \nu \nu$

0.04 events for $D_s \rightarrow \mu \nu$

Negligible background for $D_S \rightarrow \mu \nu$

Maximizing likelihood function and result

> Joint likelihood function for D_s leptonic decay : $L = L_p L_\mu L_e L_g$

✓ L_p : Poisson for D_S → $l\nu$ candidates ✓ L_g : Gaussian for singly tagged D_S candidate events $\checkmark L_{\mu}(m^2_{miss}), L_e(m^2_{miss})$ are probability functions normalized with observed events of $D_S \rightarrow \mu \nu, \tau \nu$ and background

 Maximizing the likelihood function for the branching fractions to μv and τν independently

> Assuming μ - τ universality and the theoretical prediction of the ratio $Br(\tau v)/Br(\mu v) = 9.74$,

$$Br(D_S \to \mu\nu) = (2.0^{+4.4}_{-1.7})\%$$

Br(D_S $\to \tau\nu$) = $(12^{+20}_{-10})\%$

$$Br(D_S \to \mu\nu) = [1.5^{+1.3}_{-0.6}(\text{stat})^{+0.3}_{-0.2}(\text{syst})]^{0/0}$$
$$Br(D_S \to \tau\nu) = [15^{+13}_{-6}(\text{stat})^{+3}_{-2}(\text{syst})]^{0/0}$$

Weak decay constant f_{Ds}

 $> D_s$ leptonic decay width

$$\Gamma(D_s \longrightarrow \ell \nu_\ell) = \frac{G_F^2 |V_{cs}|^2}{8\pi} f_{D_s}^2 m_{D_s} m_\ell^2 \left(1 - \frac{m_\ell^2}{m_{D_s}^2}\right)^2$$
(1)

where Fermi constant G_F , c \rightarrow s CKM matrix element V_{cs} = 0.975

$$B(D_s \longrightarrow \ell \nu_\ell) = \frac{\tau_{D_s}}{\hbar} \, \Gamma(D_s \longrightarrow \ell \nu_\ell) \tag{2}$$

> Maximizing likelihood function with respect to f_{Ds} directly gives

$$f_{Ds} = [4.3^{+1.5}_{-1.3}(\text{stat})^{+0.4}_{-0.4}(\text{syst})] \times 10^2 \text{ MeV}$$

Results of Br and f_{Ds} are independent of \checkmark luminosity and $D_s\overline{D_s}$ cross section, and \checkmark have no model-dependent assumption

First direct measurement of Br and f_{Ds} though sizable uncertainties

Central value of f_{Ds} is larger than, but consistent with, current theoretical predictions ranging from 90 to 350 MeV

Weak decay constant f_D

\succ Leptonic decay $D \rightarrow \mu v$, recoiling against a singly tagged D^{0} or D^{+} , is searched at $E_{CM} = 4.03 \text{ GeV}$ 600 $K^{-}\pi^{+}\pi^{+}$ Kŝπ (a) 100 400 Two charged decay modes 50 200 $D^+ \rightarrow K^- \pi^+ \pi^+$, $Ks^0 \pi^+$ Events/(12.5 MeV) K⁻π⁺. 800 $K^{-}\pi^{+}\pi^{-}\pi^{+}$ 400 Three neutral decay modes 400 200 $D^{0} \rightarrow K^{-}\pi^{+}, K^{-}\pi^{-}\pi^{+}\pi^{+},$ 0 0 1.4 $Ks^0 \pi^+ \pi^-$ 1.8 K_s^{*}π⁺π⁻ 2.2 200 100 0 2.2 1.4 1.8 Candidate D Invariant Mass (GeV)

The cross section at E_{CM} =4.03 GeV is found to be $\sigma(e+e-\rightarrow D^{*+}D^{-}) = 2.33 \pm 0.23 nb$

Pseudoscalar decay constant f_D

- After µ selection criteria for recoil system, main background resulted from
 - ✓ $D^{*+}D^{-}$ events in which one D decay via tagging mode, while the other via $K_L^{\ 0}\pi$, $K_L^{\ 0}\mu\nu$, or $\mu\nu\pi^{0}$
 - Study of contours show that signal and background regions are well-separated in missing mass squared M²miss
 - ✓ Then, requiring $M^2 miss < 0.7 \text{ GeV}^2$
- A single event candidate was found in $e+e- \to D^{*+}D^{*}$, where $D^{*+} \to \pi^{+}D^{0}$, with $D^{+0} \to K^{-}\pi^{+}$, and recoiling $D^{-} \to \mu^{-} \nu$.
- Corresponding background is 0.03 events, which is estimated with MC and checked with Data.

$$Br(D \rightarrow \mu\nu) = 0.08^{+0.16}_{-0.05} (\text{stat})^{+0.05}_{-0.02} (\text{syst}) \%$$

- $f_D = 300^{+180}_{-150}(\text{stat})^{+80}_{-40}(\text{syst}) \text{ MeV}$
- First direct measurement of Br and f_D

D_S branching fraction to $\Phi\pi$

Direct measurement of $B(D_S \rightarrow \phi \pi)$

> Motivation

- ✓ Branching fractions of many D_s decays known relative to B($D_s \rightarrow \phi \pi$)
- Estimates of absolute branching fractions of D_S decays require theoretical input such as
 - a) Normalization based on total D_s production
 - b) Ratio $\Gamma(D_s^+ \rightarrow \phi e^+ v) / \Gamma(D^+ \rightarrow K^- \pi^+ \pi^+)$
- Published results for $B(D_s \rightarrow \phi \pi)$ range from 3.1 to 5.1%

Singly and doubly D_S tagged events

- ✓ Events, with only one (both) D_s decay(s) fully reconstructed, termed singly (doubly) D_s tagged
- Relative rate of detection of doubly and singly tagged events provides a direct measurement of absolute branching fraction
- ✓ Previous $B(D_S \rightarrow \phi \pi)$ values before BES are measurement of the relative branching fraction (thus indirect)

Singly tagged events of $D_S \rightarrow \phi \pi$

> Event selection

- ✓ Using $\phi \rightarrow K^+K^-$ decay mode only
- Each of three charged tracks required to originate from within
 - 1.2 cm of beam position in transverse plan
 - 15 cm of of center of interaction region along beam direction
 - Polar angle $|\cos \theta| < 0.8$
 - π/K identification
 - πK^+K^- candidates subject to 1-C fit
 - Overall event 4-momentun conservation
 - **Recoil** system have same mass
 - Fit confidence level > 1%
- $\checkmark Selection of \phi \longrightarrow K^+K^-$
 - $|\mathbf{M}_{K+K}-\mathbf{M}_{\phi}| < 18 \text{ MeV}$
 - Helicity angle $|\cos \theta_K| > 0.25$

 $\sum_{i=1}^{30} \sum_{i=1}^{i=1}^{i=1} \sum_{i=1}^{i=1} \sum_{i=1}^{i=1}^{i=1} \sum_{i=1}^{i=1}^{i=1} \sum_{i=1}^{i=1} \sum_{i=1}^{$

Unbinned maximum likelihood fit yields D_S mass of M = 1968.7±0.6 MeV, signal of $N_{\phi\pi} = 40.8\pm7.2$ events Then, cross section at E_{CM} =4.03 GeV $\sigma(D_S^+D_S^-) = 320\pm56\pm81pb$

Doubly tagged events

- \succ Decay modes $D_S \rightarrow \phi \pi$, $\overline{K} \, {}^{0}K$, $\overline{K} \, {}^{*0}K$ incuded
- Expected number of doubly tagged events

$$\langle N \rangle = [\sigma_{Ds^+Ds^-}B_{\phi\pi}] (\int \mathcal{L} dt) B_{\phi\pi} \sum b_i b_j \epsilon_{ij} + N_{bg}$$

✓ Branching ratios
 b_i = B(D_S → mode i)/B_{φπ}
 ✓ ε_{ij} is efficiency for mode (i, j)
 ✓ Background N_{bg}

19

TABLE I. Doubly-tagged $D_s^+ D_s^-$ events.

	Using	1C fit	Using	5C fit
Event	D_s mass	Resonant	D_s mass	Resonant
	(MeV)	(MeV)	(MeV)	(MeV)
$\phi \pi$ vs	1969	1014	1968	1012
$\bar{K}^{o*}K$	1963	847		853
$K^{o*}ar{K}$ vs	1968	876	1967	875
$ar{K}^{o*}K$	1962	915		918

2019/9/5

Maximizing likelihood function and result

Two doubly tagged events in the *D_S* signal region,
 background level conservatively estimated as 0.2 ± 0.2 events
 Maximizing the likelihood function

$$L(B_{\phi\pi}, N_{\phi\pi}) = \frac{\langle N \rangle^{N_{obs}} e^{-\langle N \rangle}}{N_{obs}!} \frac{\exp\left[-\frac{1}{2}\left(\frac{N_{\phi\pi} - N_{\phi\pi,obs}}{\sigma_{\phi\pi}}\right)^2\right]}{\sqrt{2\pi} \cdot \sigma_{\phi\pi}}$$

$$\stackrel{0.25}{\longrightarrow} \frac{68.3\% \text{ confidence interval}}{0.05} \frac{68.3\% \text{ confidence interval}}{0.05} \frac{\langle N \rangle^{N_{obs}} e^{-\langle N \rangle}}{0.05} \frac{\langle N \rangle^{N_{obs}} e^{-\langle N \rangle}}{0.1} \frac{\langle L(B_{\phi\pi}) \text{ value is marginalized by integrating over singly tagged events } N_{\phi\pi} = 40.8 \pm 7.2$$

$$\stackrel{\langle N \rangle}{\longrightarrow} Solution$$

$$B_{\phi\pi} = [3.9^{+5.1}_{-1.9}(\text{stat})^{+1.8}_{-1.1}(\text{syst})]\%$$

- **First direct measurement** of D_S branching fraction to $\phi \pi$
- Consistent with world average of values resulting from indirect or model-dependent procedures, $B_{\phi\pi} = (3.5 \pm 0.4)$, in 1994

D_S branching fraction to eX

D_S branching fraction to eX

> Motivation

22

Careful study of e/π separation

> Joint confidence level for t_{TOF} , dE/dx and BSC requirement

Maximizing likelihood function and result

- Unbinned likelihood fits to the four distributions of Figs. (a) and (b) on previous page
- The likelihood function defined as

$$\mathcal{L}(s,b_1,b_2) = e^{-s-b_1-b_2} \prod_{i=1} \left[sf_s(x_i) + b_1 f_1(x_i) + b_2 f_2(x_i) \right]$$

where x_i effective mass (loop over candidate events), s number of signal events, b_1 and b_2 number of background events, N total number of candidate events

Summary

Summary

• First direct measurements of f_{Ds} and D_{S} branching fractions to $\mu\nu$, $\Phi\pi$

The f_{Ds} f	esult is	cited in t	he majo	r Review o	of PD	G in	n 1996.	
	$f_{D_{s}^{+}} =$	$=232 \pm 45$ =	$\pm 20 \pm 48$	MeV [7]		WA	75 (1993	3)
	$f_{D_{s}^{+}} =$	-344 ± 37	$\pm 52 \pm 42$	MeV [8]		CLE	E O (199 4	4)
	$f_{D_{s}^{+}} =$	$\pm 430^{+150}_{-130} \pm$	$40 { m MeV}$	[9]		BE	<mark>s</mark> (1995	5)
Branchir	ng fract	ion B(D _s	$\rightarrow \Phi \pi$)	is shown i	in the	list	of PD	G 1996.
$\Gamma(\phi \pi^+)$	/Γ _{total}							Γ ₁₃ /Γ
For	the first	time, we ha	ave model-	independent	t measi	urem	ents <mark>of t</mark>	his branching fraction,
and	so we i	no longer u	se the ear	rlier, model-	depend	dent	results.	See the "Note on D
Me	sons" in	the D^+ Lie	stings for	a discussion				
VALUE		CL%	EVTS	DOCUMEI	VT ID		TECN	COMMENT
0.036 :	±0. 009	OUR FIT						
0.036 :	±0. 009	OUR AVE	RAGE					
0.0359;	± 0.0077	± 0.0048		¹⁹ ARTUSC)	96	CLEO	$\mathrm{e^+e^-}$ at $\varUpsilon(4S)$
0.039	+0.051 -0.019	$+0.018 \\ -0.011$		²⁰ BAI		95C	BES	e ⁺ e ⁻ 4.03 GeV
	The f_{Ds} 1 Branchin $\Gamma(\phi \pi^+)$ For and <u>WALUE</u> 0.036 0.0359 0.039	The f_{Ds} result is $f_{D_s^+} =$ $f_{D_s^+} =$ $f_{D_s^+} =$ Branching fract For the first and so we for Mesons" in <u>VALUE</u> 0.036 ±0.009 0.0359±0.0077 0.039 ±0.0051 -0.019	The f_{Ds} result is cited in t $f_{D_s^+} = 232 \pm 45 \pm 45 \pm 100 \pm 1$	The f_{Ds} result is cited in the major $f_{D_s^+} = 232 \pm 45 \pm 20 \pm 48$ $f_{D_s^+} = 344 \pm 37 \pm 52 \pm 42$ $f_{D_s^+} = 430^{+150}_{-130} \pm 40 \text{ MeV}$ Branching fraction $\mathbf{B}(D_s \to \Phi \pi)$ For the first time, we have model- and so we no longer use the ear Mesons" in the D^+ Listings for <u>VALUE</u> <u>CL%</u> <u>EVTS</u> 0.036 ±0.009 OUR FIT 0.036 ±0.009 OUR AVERAGE $0.0359 \pm 0.0077 \pm 0.0048$ 0.039 + 0.051 + 0.018 0.039 + 0.051 + 0.018 0.039 + 0.051 + 0.018	The f_{Ds} result is cited in the major Review of $f_{D_s^+} = 232 \pm 45 \pm 20 \pm 48 \text{ MeV}$ [7] $f_{D_s^+} = 344 \pm 37 \pm 52 \pm 42 \text{ MeV}$ [8] $f_{D_s^+} = 430^{+150}_{-130} \pm 40 \text{ MeV}$ [9] Branching fraction $\mathbf{B}(D_s \to \Phi \pi)$ is shown if $\Gamma(\phi \pi^+)/\Gamma_{\text{total}}$ For the first time, we have model-independent and so we no longer use the earlier, model- Mesons" in the D^+ Listings for a discussion VALUE $CL%$ $EVTS$ $DOCUMENT0.036 \pm 0.009 OUR FIT0.036 \pm 0.009 OUR FIT0.036 \pm 0.009 OUR AVERAGE0.0359 \pm 0.0077 \pm 0.0048 19 ARTUSC0.039 + 0.051 + 0.018$ 20 BAI	The f_{Ds} result is cited in the major Review of PD $f_{D_s^+} = 232 \pm 45 \pm 20 \pm 48 \text{ MeV} [7]$ $f_{D_s^+} = 344 \pm 37 \pm 52 \pm 42 \text{ MeV} [8]$ $f_{D_s^+} = 430^{+150}_{-130} \pm 40 \text{ MeV} [9]$ Branching fraction $\mathbf{B}(D_s \to \Phi \pi)$ is shown in the For the first time, we have model-independent measures and so we no longer use the earlier, model-dependent measures for a discussion. $\frac{VALUE}{O.036 \pm 0.009 \text{ OUR FIT}} = \frac{CL\%}{DOCUMENT ID} = \frac{DOCUMENT ID}{DOCUMENT ID}$ $0.0359 \pm 0.0077 \pm 0.0048 = 19 \text{ ARTUSO}$ $0.039 + 0.051 + 0.018 = 20 \text{ BAI}$	The f_{Ds} result is cited in the major Review of PDG in $f_{D_s^+} = 232 \pm 45 \pm 20 \pm 48 \text{ MeV} [7] \text{WAY}$ $f_{D_s^+} = 344 \pm 37 \pm 52 \pm 42 \text{ MeV} [8] \text{CLE}$ $f_{D_s^+} = 430^{+150}_{-130} \pm 40 \text{ MeV} [9] \text{BE}$ Branching fraction $\mathbf{B}(D_s \to \Phi\pi)$ is shown in the list $\Gamma(\phi \pi^+)/\Gamma_{\text{total}}$ For the first time, we have model-independent measurem and so we no longer use the earlier, model-dependent Mesons" in the D^+ Listings for a discussion. $\frac{VALUE}{0.036 \pm 0.009 \text{ OUR FIT}} = \frac{OL\%}{EVTS} = \frac{DOCUMENT ID}{0.036 \pm 0.009 \text{ OUR FIT}}$ $0.0359 \pm 0.0077 \pm 0.0048 = 19 \text{ ARTUSO} = 96$ $0.039 + 0.051 + 0.018 = 20 \text{ BAI} = 95 \text{ C}$	The f_{Ds} result is cited in the major Review of PDG in 1996. $f_{D_s^+} = 232 \pm 45 \pm 20 \pm 48 \text{ MeV} [7]$ WA75 (1993) $f_{D_s^+} = 344 \pm 37 \pm 52 \pm 42 \text{ MeV} [8]$ CLEO (1994) $f_{D_s^+} = 430^{+150}_{-130} \pm 40 \text{ MeV} [9]$ Branching fraction $\mathbf{B}(D_s \to \Phi\pi)$ is shown in the list of PD For the first time, we have model-independent measurements of t and so we no longer use the earlier, model-dependent results. Mesons" in the D^+ Listings for a discussion. $\frac{VALUE}{0.036 \pm 0.009} \begin{array}{c} CL\% \\ EVTS \\ 0.0359 \pm 0.0077 \pm 0.0048 \\ 19 \\ ARTUSO \\ -0.019 \\ -0.011 \\ \end{array}$

Summary (cont.)

First direct measurements of D_s branching fractions to μv , eX

Branching fraction $B(D_s \rightarrow \mu \nu)$ is shown in the list of PDG 1996.

Branching fraction $B(D_s \rightarrow eX)$ is shown in the list of PDG 1998.

$\Gamma(e^+ \text{ anything})/\Gamma_{\text{total}}$						Г ₅ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$0.077 \substack{+0.057 + 0.024 \\ -0.043 - 0.021}$		BAI	97	BES	$e^+e^- \rightarrow$	$D_s^+ D_s^-$

Summary (cont.)

• First direct measurements of D_s branching fractions to ΦX

✓ Branching fraction $B(D_S \to \Phi X)$ is shown in the list of PDG 1998.

$\Gamma(\phi \text{ anything})/\Gamma_{\text{total}}$	I				Г ₆ /Г
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.178^{+0.151}_{-0.072}^{+0.006}_{-0.063}$	3	BAI	98	BES	$e^+e^- \rightarrow D_s^+D_s^-$

Publication and Conference talk

Publication

- ✓ J. Z. Bai et al., Phys. Rev. Lette. **74**, 4599 (1995).
- ✓ J. Z. Bai et al., Phys. Rev. D **52**, 3781 (1995).
- ✓ J. Z. Bai et al., Phys. Rev. D 56, 3779 (1997).
- ✓ J. Z. Bai et al., Phys. Rev. D 57, 28 (1998).
- ✓ J. Z. Bai et al., Phys. Lett. B **429**, 188 (1998).

International Conference Presentation

- ✓ C. C. Zhang, "Direct Measurement of the Pseudoscalar Decay Constant f_{Ds} from BES", in Proceedings of the XXVII International Conference on High Energy Physics", Glasgow Scotland UK, July 1994.
- ✓ J. M. Izen, "Direct Measurement of $B(D_S \rightarrow \phi \pi)$ ", in Proceedings of the XXVII International Conference on High Energy Physics", Glasgow Scotland UK, July 1994.

Reward

获奖名称:北京谱仪Ds物理的研究

- ✓ 获奖类别:中国科学院自然科学奖 (CAS Award for Natural Sciences)
- ✓ 获奖等级: 一等奖 (first class)
- ✓ 授奖部门: 中国科学院
- ✓ 获奖时间: 1997
- ✓ 主要完成人: 张长春、李卫国、毛慧顺、顾建辉、李小南、荣 刚

Thanks

Backup

Cross sections predicted by Couple-channel mode

2019/9/5