STAR Upgrade and long-term plan

Zhangbu Xu

The history of our forward upgrade Planning

starting from the Decadal Plan.

RHIC: eight key unanswered questions

Hot QCD Matter

- 1: Properties of the sQGP
- 2: Mechanism of energy loss: weak or strong coupling?
- 3: Is there a critical point, and if so, where?
- 4: Novel symmetry properties
- 5: Exotic particles

Partonic structure

- 6: Spin structure of the nucleon
- 7: How to go beyond leading twist and collinear factorization?

8: What are the properties of cold nuclear matter?

5

Summary of the plan

	Near term (Runs 11-13)			
Colliding systems	<i>p+p</i> , A+A	<i>p+p</i> , A+A	<i>p+p</i> , <i>p+</i> A, A+A, <i>e+p</i> , e+A	
Upgrades	FGT, FHC, RP, DAQ10K, Trigger	HFT, MTD, Trigger	Forward Instrum, eSTAR, Trigger	
(1) Properties of sQGP	Y, J/ ψ $ ightarrow$ ee, m_{ee} , v ₂	Y, $J/\psi \rightarrow \mu\mu$, Charm v_2 , R_{CP} , corr, Λ_c/D ratio, μ -atoms		
(2) Mechanism of energy loss	Jets, γ-jet, NPE	Charm, Bottom	Jets in CNM, SIDIS, c/b in CNM	
(3) QCD critical point	Fluctuations, correlations, particle ratios	Focused study of critical point region		
(4) Novel symmetries	Azimuthal corr, spectral function	e-μ corr, μ-μ corr		
(5) Exotic particles	Heavy anti-matter, glueballs			
(6) Proton spin structure	WA_L , jet and di-jet A_{LL} , intra-jet corr, (Λ + $\overline{\Lambda}$) D_{LL}/D_{TT}		$\overline{\Lambda} D_{LL}/D_{TT},$ polarized DIS & SIDIS	
(7) QCD beyond collinear fact	Forward A _N		Drell-Yan, F-F corr, polarized SIDIS	
(8) Properties of initial state		ted when they first	Charm corr, Drell-Yan, <i>Jlψ</i> , F-F corr, Λ, DIS, SIDIS	
		become possible Many will continue in future periods		

STAR Decadal Plan – June, 2011 PAC Meeting

C. Gagliardi for the STAR Collaboration

7

If Anything is certain, it is Changes will occur

	Near term (Runs 11-13)		Long term (Runs 17–)	
Colliding systems	<i>p+p</i> , A+A	<i>p</i> + <i>p</i> , A+A	p+p, p+A, A+A, e+p, e+A	20222
Upgrades	FGT, FHC, RP, DAQ10K, Trigger	HFT, MTD, Trigger	Forward Instrum, eSTAR, Trigger	
(1) Properties of sQGP	Y, J/ ψ $ ightarrow$ ee, $m_{ m ee}$, v_2	Y, $J/ψ → μμ$, Charm v_2 , R_{CP} , corr, Λ _c /D ratio, μ-atoms	<i>p</i> +A comparison	
(2) Mechanism of energy loss	Jets, γ-jet, NPE	Charm, Bottom	Jets in CNM, SIDIS, c/b in CNM	
(3) QCD critical point	Fluctuations, correlations, particle ratios	Focused study of critical point region	→ 201920	
(4) Novel symmetries	Azimuthal corr, spectral function	e-μ corr, μ-μ corr		
(5) Exotic particles	Heavy anti-matter, glueballs	1		
(6) Proton spin structure	WA_L , jet and di-jet A_{LL} , intra-jet corr, $(\Lambda + \overline{\Lambda}) D_{LL}/D_{TT}$	Run 15 p+A	$\overline{\Lambda} D_{LL}/D_{TT}$, polarized DIS & SIDIS	
(7) QCD beyond collinear fact	Forward A _N		Drell-Yan, F-F corr, polarized SIDIS	
(8) Properties of			Charm corr, Drell-Yan, <i>J\ψ</i> ,	
initial state		Measurements listed when they first become possible		
	Many will continue			
cadal Plan – June,	2011 PAC Meeting	Ri	un17 on pp510 & Is	obar 7

STAR Decadal Plan – June, 2011 PAC Meeting

Zhangbu Xu @ Collaboration meeting in 2016

BNL ALD S. Vigdor talk at 2011 PAC Meeting

A Long Term (Evolving) Strategic View for RHIC

* New PHENIX and STAR Decadal Plans provide options for this period. Dedicated storage ring for novel charged-particle EDM measurements another option.

BNL ALD B. Mueller's talk at 2015 RHIC/AGS Users Meeting

Proposed run schedule for RHIC

Years	Beam Species and	Science Goals	New Systems
2014	Au+Au at 15 GeV Au+Au at 200 GeV ³ He+Au at 200 GeV	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD
2015-16	p⁺+p↑ at 200 GeV p↑+Au, p↑+Al at 200 GeV High statistics Au+Au Au+Au at 62 GeV ?	Extract η/s(T) + constrain initial quantum fluctuations Complete heavy flavor studies Sphaleron tests Parton saturation tests	PHENIX MPC-EX STAR FMS preshower Roman Pots Coherent e-cooling test
2017	p‡+p‡ at 510 GeV	Transverse spin physics Sign change in Sivers function	
2018	No Run		Low energy e-cooling install. STAR iTPC upgrade
2019-20	Au+Au at 5-20 GeV (BES-2)	Search for QCD critical point and onset of deconfinement	Low energy e-cooling
2021-22	Au+Au at 200 GeV p↑+p↑, p↑+Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia Forward spin & initial state physics	sPHENIX Forward upgrades ?
≥ 2023 ?	No Runs		Transition to eRHIC
khaven Science	Associates		49 BROOKHAV

RHIC Run Plan 2019-25

- * Beam Energy Scan II (2019-21):
 - Low energy (√SNN = 7.7, 9.1, 11.5, 14.5, 19 electron cooling to increase luminosity
 - Fixed target runs at (3.0), 3.5, 3.9, 4.5, 5.2
 - Search for signs of critical phenomena in ε
- * Forward spin run (2022): Fall 2021
 - 500 GeV p+p (enhanced by forward upgra
 - Spin physics measurements complementa
- Runs with sPHENIX (2023-25):
 - ✤ Full energy (√snn = 200 GeV) Au+Au, p+p,
 - Precision measurements of fully resolved j

2019	28 cryo-weeks with STAR
2020	Au+Au at 11.5, 14.5, 19.6 GeV Au+Au at 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 GeV (FXT)
2021	20 cryo-weeks with STAR Au+Au at 7.7 / 9.1 GeV
2022	16 cryo-weeks with STAR (forward) p+p at 500 GeV
2023	24 cryo-weeks with sPHENIX and STAR Au+Au at 200 GeV
2024	24 cryo-weeks with sPHENIX and STAR p+p and p+Au at 200 GeV
2025	24 cryo-weeks with sPHENIX and STAR Au+Au at 200 GeV
2024	Au+Au at 200 GeV 24 cryo-weeks with sPHENIX and STAR p+p and p+Au at 200 GeV 24 cryo-weeks with sPHENIX and STAR

BES-II Mid-rapidity -1.5<n<1.5 Forward-rapidity 2.8<n<4.2 p+p & p+A p+p & p+A A+A A+A Beam: Beam:

Beam: Full Energy AuAu

Physics Topics:

a deep look into the properties of the QGP:

γ&e+e-pairs

- chiral symmetry restoration
- temperature and lifetime of hot, dense medium

Hypertriton Lifetime Measurement

Precision measurements of direct photon yields and vn

500 GeV: p+p 200 GeV: p+p and p+A

Physics Topics:

 Improve statistical precision

TMD measurements,

i.e. Collins, Sivers, ... Access s & ∆s through

Kaons in jets

 Measurement of GPD E_a through UPC J/Ψ

 First access to Wigner functions through dijets in UPC

- Gluon and guark vacuum fragmentation
- Gluon and guark fragmentation in nuclear medium
- Nuclear dependence of Collins FF

Beam: Full Energy AuAu

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to n~4
- Longitudinal decorrelation up to n~4
- Global Lambda Polarization
- strong rapidity dependence

500 GeV: p+p 200 GeV: p+p and p+A

Physics Topics:

- TMD measurements at high x transversity → tensor charge
- Improve statistical precision for Sivers through DY
- ∆g(x,Q2) at low x through Di-jets
- Gluon PDFs for nuclei
- R_{pA} for direct photons & DY

23

Test of Saturation predictions through di-hadrons, y-Jets

2021: provides a nice opportunity to run 500 GeV polarized pp All other data taking in parallel to sPHENIX data taking campaign **WENERGY**

RHIC-PAC, June 2018

Run Plan (STAR)

	2018	2019	2020	2021	2022	2023	2024	2025
Detector configuration	EPD	iTPC/eTOF	Partial Forward	Forward Calorimeter sTGC	FST	NO Detector Upgrade ONLY Operation Driven by sPHENIX		
Operation	lsobar 27GeV FXT	19.6GeV 14.5GeV FXT ?	11.5 9.1 FXT	9.1 7.7	pp500	Au+Au200	рр рА	Au+Au200
weeks	16	24	24	20	16	24	24	24

STAR BUR for BES-II physics data-taking 38 weeks; Cryoweeks: 68--72 weeks = physics + LEReC + CAD prep

Forward Upgrade Timeline

- 2010-2014 Conceptual Design and Physics cases forward DY, forward Jets, forward photon, forward correlations
- 2015 proposal turned down by BNL
- 2016-2017

strengthen physics cases with new Spin data and LHC/RHIC rapidity correlation results Positive reviews from PAC

• 2018 November BNL Director technical review (positive)

Discussion and summary

- Hardware
 - sTGC components and to-do list
 - Silicon components and to-do list
 - Simulation and to-do list
- Physics cases (Heavy-ions)
 - Global polarization and predictions?
 - System scan: Small systems and measurements?
 - Jet quenching (rapidity dependence)
 - Heavy-flavor, Strangeness and hypertriton?

sTGC

• Module design is still not finalized. Timeline for finalizing the design and prototype

?BNL

- Prototype tests and performance with different gas Chi yang
- Electronics and finalize options BNL, USTC and SDU? (Lijuan)
- Ghost rejection approach (what are the parameters for optimization)
 Zhenyu chen
- Funding and manpower module (estimate cost), electronics (?)

Silicon Strip disks

- Design more or less finalized (end of 2019)
- Further optimization (r segmentation?)

Limitations (shift r if demonstrated necessary from simulations)

- Mechanic integration more regular meetings with STAR support group
- Prototype status sensors (Hamamatsu, NDL), Two students?

August 2019

• 4th disk option?

Depending on the next couple of iterations of new sensors

 Funding and Manpower mechanic support (NCKU), sensors (NSFC), design/assembly/test (new postdoc)

Tracking algorithm and geometry

- Decide to use the new algorithm
- Finalize the algorithm Daniel a few weeks
- Optimize sTGC and Silicon approach
- Non-uniform magnetic field
- Manpower Te-Chuan,

Vorticity and polarization rapidity dependence

• Global, local or circular polarization

Quantify predictions from models

What do we actually constrain/sensitive to with rapidity measurement

Lambda simulation to be realistic, and some real projection from models

• What required from the forward upgrade?

Small and large System scan

• Longitudinal pt differential Measurement: Rapidity (de)correlation (rn), ridge

Reduce non-flow in small systems

- Disentangle initial vs final state effects?
- Together with mid-rapidity measurement? Is there an identifiable case? Forward measurement helps understand midrapidity
- To-do list Jiangyong and Prithwish

Jet quenching

- Rapidity dependence: bulk profile change; spectral shape and q/g content change jet shape
- What is the message?

Effectively jet quenching in HIGH MU_B

 To-do list Nihar Sahoo

HF, Strangeness and hypertriton

- Gluon PDF? J/psi rapidity
- Chemical content Lambda and Ks?

How about multiple strangeness baryons?

- V1 SLOPES
- Hypernuclei similar to reconstruct Lambda, use EPD to identify z=+2