Unique physics opportunities with the STAR forward upgrade: A heavy ion perspective

Prithwish Tribedy

BRODKHFNEN
NATIONAL LABORATORY

STAR Forward Upgrade Workshop, Shandong University, Qingdao, China, May 7-8, 2019

Future Capabilities

Why forward upgrade at RHIC is unique?

At RHIC it is possible to build detectors that can cover up to beam rapidity and study many unexplored physics

Phys Rev C 72, 051901 (R) (2005)

Charged hadrons flow

Phys. Rev. Lett. 91, 052303 (2003)

Charged hadrons multiplicity

Previous measurements have large uncertainties \& limited capabilities, therefore fSTAR will open many new possibilities

Vortical and Chiral Effects

Cyclone "Fani" : Last week in India

Cyclone "Fani" : Last week in India

Angular momentum in HICs

Larger gradient in forward rapidity makes it ideal to study vortical effects

Global Polarization \& CME

Search for the Faraday fluid

Gursoy et al,

1806.05288

$\Delta v_{1} \equiv v_{1}\left(h^{+}\right)-v_{1}\left(h^{-}\right)$
$\Delta \mathcal{V}_{n}=\frac{\left\langle\bar{Q}_{n, T P C} Q_{n, Z D C E}^{*}\right\rangle}{\left\langle Q_{n, Z D C E} Q_{n, Z D C W}^{*}\right\rangle} \quad Q_{n, T P C}=\sum \mathbf{y} \mathbf{q} e^{i n \phi}$

Initial conditions of heavy ion collisions

What scale of physics dominate initial state?

Over a decade we have been proposing different transverse structures of the initial stages of the colliding nuclei

Gluon saturation predicts at higher energies the fields inside the colliding nuclei should have correlations smaller than nucleon scale

Do sub-nucleonic scale correlations manifest in observables ?

What manifest in flow measurements

Sub-nucleonic hotspots are not needed to explain heavy ion flow harmonic data, they maybe essential to explain $p+p$ data

Nuclei with sub-nucleonic scale correlations

Gale, Jeon, Schenke, PT, Venugopalan 1209.6330

Moreland, Bernhard, Bass 1412.4708

Flow observables in A+A may be dominated by nucleon geometry? Ollitrault et al "New paradigm", nucleons are not important: 1902.07168

A different picture when you change rapidity

Sub-nucleonic scale correlations (flux-tubes)

Scale in the problem: $\Delta \eta \sim 1 / \alpha s$

Wounded Nucleons
(Bozek et.al., arXiv:1011.3354)

Scale in the problem: $\Delta \eta \sim Y_{\text {beam }}$

At what scale does the boost invariance break ?

Longitudinal de-correlation around mid-rapidity

$$
\begin{aligned}
& r_{n}\left(\eta^{a}, \eta^{b}\right) \equiv \frac{V_{n \Delta}\left(-\eta^{a}, \eta^{b}\right)}{V_{n \Delta}\left(\eta^{a}, \eta^{b}\right)} \\
& C_{n}\{2\}=V_{n \Delta}=\left\langle\left\langle\cos \left(n \phi_{1}-n \phi_{2}\right)\right\rangle\right\rangle
\end{aligned}
$$

Longitudinal de-correlation around mid-rapidity

$$
\begin{aligned}
& r_{n}\left(\eta^{a}, \eta^{b}\right) \equiv \frac{V_{n \Delta}\left(-\eta^{a}, \eta^{b}\right)}{V_{n \Delta}\left(\eta^{a}, \eta^{b}\right)} \\
& C_{n}\{2\}=V_{n \Delta}=\left\langle\left\langle\cos \left(n \phi_{1}-n \phi_{2}\right)\right\rangle\right\rangle
\end{aligned}
$$

Longitudinal de-correlation scaled w.r.to beam rapidity, LHC results seems to show a scaling, do we see a breaking at RHIC ?

Characterizing the perfect fluid

Transport properties of matter formed in HICs

We have made precision measurements of the shear viscosity to entropy density ratio η / s of the matter formed in HICs

Can we map out the temperature dependence profile of transport parameters?

Transport properties of matter formed in HICs

We have made precision measurements of the shear viscosity to entropy density ratio η / s of the matter formed in HICs

Can we map out the temperature dependence profile of transport parameters?

Constraining temperature dependence of $\eta / s(T)$

Viscosity has temperature dependence, RHIC \& LHC probe different regions

Niemi et al 1203.2452

RHIC $\eta / s\left(T \lesssim T_{C}\right)$
$\mathrm{LHC} \eta / s\left(T>T_{C}\right)$

Region of nearly perfect fluidity (RHIC collisions spend a lot of time here)

Constraining temperature dependence of $\eta / s(T)$

Recent STAR results and comparison to model indicate a large fraction of flow correlations are developed at the hadronic stage

Niemi et al 1203.2452

RHIC

This unique feature of RHIC can be utilized

Constraining temperature dependence of $\eta / s(T)$

Viscosity has temperature dependence :
RHIC collisions can probe the region of perfect fluidity

Denicol et al PhysRevLett.116.212301

RHIC

Measurements at RHIC with STAR forward upgrade can constrain $\eta / \mathrm{s}(\mathrm{T})$ over wide window of temperatures

Constraining temperature dependence of $\eta / s(T)$

Existing data has large uncertainties to constrain $\eta / s(T)$
Denicol et al PhysRevLett.116.212301

fSTAR

fSTAR

Measurements at RHIC with STAR forward upgrade can constrain $\eta / s(T)$ over wide window of temperatures

Collectivity in Small systems

Collectivity in small collision systems

High multiplicity events in small collision systems and HICs

Signature of collectivity: similar pattern of particle emission over a wide range in momentum space

What kind of initial state correlations lead to such momentum space distribution of particle emission?

Hydrodynamic evolution: one possible mechanism, but what else?

From Heavy lon to small collisions

$\mathrm{Au}+\mathrm{Au}$

$3 \mathrm{He}+\mathrm{Au}$

$d+A u$
p+Au

How anisotropy is generated with time

Full stress-energy tensor from IP-Glasma

Initial conditions: position space and momentum space anisotropy
Before hydrodynamics takes over, the system already has momentum space anisotropy

How anisotropy is generated with time

IP-Glasma + MUSIC (Hydro)
Schenke, Shen, PT in preparation
$A u+A u$

Smooth evolution in $A+A$

Evolution in small systems

Very different trends between large and small systems
P.Tribedy, forward upgrade meeting, Shandong, 2019

How anisotropy is generated in small systems

Schenke, Shen, PT in preparation

Use STAR data to constrain model

Make prediction for small systems

P.Tribedy, forward upgrade meeting, Shandong, 2019

How anisotropy is generated in small systems

Flow in d+A using a hybrid framework constrained by A+A data at RHIC

A large fraction of the anisotropy is coming from initial flow not geometry In IP-Glasma framework this initial flow is coming from Glasma \& CGC

Hydro vs other models such as CGC

Hydrodynamics (singleparticle anisotropy)

There is something called event-plane

CGC (two-particle anisotropy)

How much anisotropy come from Hydro ?

Hydrodynamics (singleparticle anisotropy)

CGC (two-particle anisotropy)

Goal is to test if factorization holds

$$
\begin{aligned}
v_{2}(2 P C) & =\frac{v_{2}^{2}\{2\}\left(p_{T, 1}, p_{T, 2}\right)}{v_{2}\{2\}\left(p_{T, 2}, p_{T, 2}\right)} \\
& =\frac{\left\langle v_{2}\left(p_{T}, 1\right) v_{2}\left(p_{T, 2}\right) \cos \left(2 \Psi_{2}\left(p_{T, 1}\right)-2 \Psi_{2}\left(p_{T, 2}\right)\right)\right\rangle}{\sqrt{\left\langle v_{2}^{2}\left(p_{T, 2}\right)\right\rangle}}
\end{aligned}
$$

Only STAR has the capability to measure factorization breaking of longrange azimuthal correlation, even one systems is enough

Summary

Physics Measurements		Longitudinal decorrelation$\begin{gathered} C_{n}(\Delta \eta) \\ r_{n}\left(\eta_{a}, \eta_{b}\right) \end{gathered}$	$\begin{gathered} \text { Temperature } \\ \text { dependent } \\ \text { transport } \\ \eta / s(T) \text {, } \\ \zeta / s(T) \end{gathered}$	Mixed flow Harmonics correlation C$C_{m, n, m+n}$	$\begin{aligned} & \text { Ridge } \\ & V_{n d} \end{aligned}$	Event Shape and Jetstudies
Detectors	Acceptance					
Forward Calorimeter (FCS)	$\begin{gathered} -2.5>\eta>-4.2 \\ E_{T} \text { (photons }, \\ \text { hadrons) } \end{gathered}$	One of these detectors necessary		One of these detectors necessary	Good to have	One of these detectors needed
Forward Tracking System (FTS)	$\begin{gathered} -2.5>\eta>-4.2 \\ p_{T} \text { (charged } \\ \text { particles) } \end{gathered}$		Important		Important	

fSTAR upgrade at RHIC will provide unique opportunity to :

1) Breaking of boost invariance in heavy ion collisions
2) Transport parameters near the region of perfect fluidity
3) Breaking of flow factorization in small collision systems
4) Enhanced Spin Polarization and reduced CME like phenomena

Backup

A different picture when you change rapidity

How color fields inside colliding nuclei changes with x (rapidity)

Even for a fixed nucleon configuration the correlation length has to change as saturation scale change with rapidity

Can we study this with precision measurements at forward rapidity?

Many approaches to describe initial stages

Existing measurements at forward rapidity

Limited previous measurements exist at forward rapidity at RHIC

Phys Rev C 72, $051901(\mathrm{R})(2005)$

Charged hadrons flow

Phys. Rev. Lett. 91, 052303 (2003)

Charged hadrons multiplicity

No data on higher order flow harmonics (v_{3}, v_{4}, v_{5}) \& rapidity density correlations/fluctuations $\left\langle\frac{d N}{d Y_{1}} \frac{d N}{d Y_{2}}\right\rangle \quad$ fSTAR

Why do we need wider window of rapidity?

Flow like correlations are early time long-range \rightarrow large $\Delta \eta$
Background comes from Jets \& non-flow \rightarrow small $\Delta \eta$

Precise extraction of flow (azimuthal correlations) requires measurements over wide window of rapidity

Very first attempt from STAR

fig: Schenke, Schlichting 1605.07158

Observables: $r_{n}\left(\eta^{a}, \eta^{b}\right) \equiv \frac{V_{n \Delta}\left(-\eta^{a}, \eta^{b}\right)}{V_{n \Delta}\left(\eta^{a}, \eta^{b}\right)}$
$V_{n \Delta}=\left\langle\cos \left(n\left(\phi_{1}\left(\eta_{1}\right)-\phi_{2}\left(\eta_{2}\right)\right)\right)\right\rangle$

Current measurements with FTPC $(3<\eta<4)$ have large uncertainties
fSTAR will provide improved measurements

3D structure of Initial state physics

Several recent models have been proposed with different underlying dynamics for longitudinal structure of initial state of HICs

Can future measurement discriminate these models ?
What is the scale at which boost invariance is broken?

Very first attempt from STAR

Measurement from STAR with existing detectors :
Hints of longitudinal de-correlations
fig : 1605.07158

Measurement using 300 M event with TPC \rightarrow could go up to 1.8

Very first attempt from STAR

Measurement from STAR with existing detectors : Hint of longitudinal de-correlations
fig: 1605.07158

Measurement using 300 M event with TPC \rightarrow could go up to 1.8 Wider $\Delta \eta$ can probe this in more details

