Hypernucleus physics in STAR forward experiment

Jinhui Chen (陈金辉)

Institute of Modern Physics, Fudan University

Workshop on STAR Forward Tracking Detector Upgrade and Related Physics

2019.5.7-8, Qingdao

Hyperons in neutron stars

Myperon puzzle

- Hyperons are predicted to exist inside neutron stars at densities exceeding 2-3p₀
- The inner core of NS is so dense, Pauli blocking prevents hyperons from decaying by limiting the phase space available to nucleons
- The presence of hyperon reduces the maximum mass of neutron stars \sim 0.5-1.2M₀
- However, new observation for large mass of NS!

P. Demorest et al., Nature 467 (2010) 1081; Antoniadis et al., Science 340 (2013) 448

- Rijken and Schulze: inclusion of YY interactions add 0.3M to Mmax of NS
- Lonardoni: adding YNN stiffens EoS of NS, and increase the mass; solution to overbinding in s-shell hypernuclei?

From hypernuclei to neutron stars

GW from NS merger, provides new information on NS EoS, and new constrains on radius and mass

The LIGO and Virgo Col., Phys. Rev. Lett. 119, 161101 (2017); Phys. Rev. Lett. 121, 161101 (2018)

1.97 M_{\odot} $R_1 = 11.9^{+1.4}_{-1.4} \text{ km}$ $R_2 = 11.9^{+1.4}_{-1.4} \text{ km}$

Lonardoni et al., Phys. Rev. Lett. 114 (2015); Wirth and Roth, Phys. Rev. Lett. 117 (2016)

Rezzolla et al., Astro. J. Lett. 852 (2018) ${
m M} \leq 2.16 {
m M}_{\odot}$

Heavy ion collider as a hyperon factory

0-5% central collisions, Au+Au @ 200 GeV, Pb-Pb @ 2.76 TeV

RHIC, a QCD machine, small bang

Hyperon rate is high, lab. for Y-N interaction

Excellent secondary vertex reconstruction in STAR and ALICE

(Hyper-)nuclei production in HIC

STAR. Science 328, 58 (2010)

Particle type	Ratio
$\frac{\overline{3}}{\overline{\Lambda}}\overline{H}/_{\Lambda}^{3}H$	$0.49 \pm 0.18 \pm 0.07$
$^{3}\overline{\text{He}}/^{3}\text{He}$	$\textbf{0.45}\pm\textbf{0.02}\pm\textbf{0.04}$
$\frac{3}{\Lambda}\overline{H}/^{3}\overline{He}$	$0.89 \pm 0.28 \pm 0.13$
$^{3}_{\Lambda}$ H/ ³ He	$0.82 \pm 0.16 \pm 0.12$

The production reduction factor is up to 10³ at RHIC and 300 at LHC, limited to A<4 system

Recent results on lifetime measurement

Binding energy: an answer to Dalitz's question?

M The early data suffers from large statistical uncertainty!

"I feel that we are far from seeing the end of this road. A good deal of theoretical work on this 3-body system would still be well justified." R.H. Dalitz Nucl. Phys. A 754, 14 (2005)

Our measurements with modern technology

Recent data on QCD phase diagram study

(Hyper)nuclei production at forward upgrade

- Rich hyperon and hypernuclei production rate at lower energies
- Better lifetime and binding energy measurements and will improved the understanding on Y-N interaction
- The baryon number desntidy fluctuation and baryonstrangeness correlations accessible probe to the QCD phase transition

A.Andronic et al., PLB 697 (2011) 203

Rate estimated at 11.5 GeV

MBlast wave + nucleon coalescence

Phys. Lett. B 754 (2016)

- 17M events produced 13903 hypertriton in rapidity window (0,1.5), assuming eff. 20%, BR to helium3 and pion 25%, the count is 695
- But the difficulty is on A=4 hypernuclei, only 146 signal obtained without eff. or BR factor in

Estimates with different production mechanism

Production in central and peripheral HIC are quite different: re-scattering and absorption of hyperons by excited spectators in peripheral collisions

Producing light hypernuclei in peripheral collisions, HypHI @ GSI

ons, HypHI @ Κ π κ

Calculations based on UrQMD+CB are strongly depend on the coalescence parameter

Botvina et al., Phys. Lett. B 742 (2015) 7

$$|\vec{\nu}_i - \vec{\nu}_{cm}| < \nu_c$$

$$\vec{v}_{cm} = \frac{1}{E_A} \sum_{i=1}^{A} \vec{p}_i$$

Proposal from other exp. (1)

Proposed (π-,K⁰) reaction on nuclear targets for precise determination of the lifetime of the hydrogen hyperisotopes and other neutron-rich Λ-hypernuclei at J-PARK

M. Agnello et al., NPA 954 (2016) 176

Proposal from other exp. (2)

Achenbach and Pochodzalla (2017)

- Proposal to use the high-precision technique of decay-pion spectroscopy at the Mainz Microtron (MAMI) to the accurate determination of the binding energy measurement
- Statistical decay calculations suggest that lithium is the optical target material to observe hypertriton decays under relative clean conditions with only few other light hyperfragments being produced

Figure 3: Left: Schematic view of a possible Li target and detection geometry to be employed in the hypertriton measurement (view from top; not to scale). Right: Expected temperature distribution in a 1 mm thick block of Li inside a cooling frame, while an electron beam of $5 \,\mu$ A current, vertically wobbled by $\Delta y = \pm 2$ mm, is entering the target.

Proposal from other exp. (3)

Summary

It is promising to carry out a beautiful measurements on light (hyper)nuclei production at STAR forward experiment.

Thank you!