Workshop on STAR Forward Tracking Detector Upgrade and Related Physics May 7-8, 2019, Shandong University, Qingdao, China

Recent STAR Heavy Flavor Results and Opportunities with STAR Forward Upgrade

Zebo Tang (唐泽波)

State Key Lab. of Particle Detection & Electronics

University of Science and Technology of China (USTC)

Outline

- Open heavy flavor results from STAR HFT
- Quarkonium results from STAR MTD
- Heavy flavor physics with STAR forward upgrades

Why Heavy Flavor?

"Heavy" flavor: Penetrating probe of QGP

- Dominantly produced at early stage (hard scattering, gluon)
- Calibrated probe calculable in pQCD

Quarkonium: Deconfinement in QGP (melting and regeneration)

Heavy Flavor Hadron Signals with HFT

Workshop on STAR Forward Upgrade, 5/7-8, 2019, Qingdao, China

D⁰ Suppression in Au+Au@200 GeV

- Clear suppression at high p_T
 - Comparable to light flavor
 - Clear centrality dependence
- $d\sigma/dy$ at mid-y lower than p+p
 - Cold Nuclear Matter effects?
 - Charm redistribution?

D[±] and D^{*} Production in Au+Au

- D[±]/D⁰ and D^{*}/D⁰ yield ratio in Au+Au @ 200GeV consistent with Pb+Pb @ 5.02 TeV and PYTHIA (p+p@200 GeV)
- D^{\pm} , D^{*} and D^{0} have same suppression in heavy-ion collisions

D_s Enhancement

ALICE: EPJC, 550 (2017), JHEP 10, 174 (2018)

- D_s/D^0 significantly higher in heavy-ion than in p+p
- Strangeness enhancement + coalescence

Λ_{c} Enhancement

- Λ_c/D^0 @STAR significantly higher in heavy-ion than PYTHIA and in p+p/Pb @ALICE
- Increase towards central collisions
- Consistent with coalescence picture

Charm Cross Section in Au+Au

Charm Hadron		Cross Section dơ/dy (µb)	
AuAu 200 GeV (10-40%)	D^0	41 ± 1 ± 5	
	D^+	18 ± 1 ± 3	
	D_s^+	15 ± 1 ± 5	
	Λ_c^+	78 ± 13 ± 28 *	
	Total	152 ± 13 ± 29	
pp 200 GeV	Total	$130 \pm 30 \pm 26$	

* derived using Λ^+_{-}/D^0 ratio in 10-80%

- Charm quark cross section per binary collision in Au+Au consistent with p+p Charm conservation
- Charm quark distribution among hadron species different between Au+Au and p+p – Charm redistribution

Bottom Quark Suppression

- Stronger suppression of e←B
 than e←D
- Described by theoretical calculations
- Consistent with mass hierarchy of parton energy loss

$D^0 v_2$ and v_3 in Au+Au

2014: STAR, PRL118, 212301 (2017)

- Both v_2 and v_3 follow NCQ-scaling with light flavors
- Suggest charm quarks flow with the QGP
- Helps to constraint charm quark diffusion coefficient

Heavy Quark v_1 in Heavy-Ion Collisions

- Flow vs. anti-flow in non-central heavy-ion collisions
- Heavy quark produced according to binary collision density profile, which is symmetric in rapidity
- Large anti-flow induced by drag by the tilted bulk
- In addition, EM field induces opposite v_1 for charm and anti-charm

$\mathbf{D}^{\mathbf{0}} \mathbf{v}_1$ in Au+Au

- v_1 of D^0 is about 20 times larger than that of the kaons (~3 σ)
- Sensitive to both the initial titled source and heavy quark transport properties
- Current precision does not allow draw firm conclusion on EM effect

Quarkonium Signals with MTD

Zebo Tang (USTC)

Workshop on STAR Forward Upgrade, 5/7-8, 2019, Qingdao, China

J/ψ Production in p+p

- Large p_T coverage by combining di-electron and di-muon
- p_T spectra described by CGC+NRQCD at low- p_T and NLO NRQCD at high p_T
- Polarization measurements can constraint theoretical calculations

Charmonium Production in p+Au

Ferreriro et al., Few Body Syst. 53, 27(2012)

Co-mover calculation, Ferreiro, private comm.

- Models with only nPDF describe the data, but additional nuclear ٠ absorption is favored
- First $\psi(2S)$ to J/ ψ double ratio measurement from STAR ~ unity

J/ψ Suppression in Au+Au

- Low-p_T: Significant suppression in central, stronger than LHC Regeneration at LHC on top of QGP melting and CNM
- High-p_T: Significant suppression in central, less than LHC QGP Melting

Upsilon Suppression in Au+Au

- Significant suppression of Upsilon(1S) in central collisions
- Stronger suppression of excited states than ground state
 - Consistent with sequential suppression

STAR Forward Upgrade (Phase I)

STAR Forward Upgrade (Phase II)

Electron with STAR Forward Upgrades

iTPC: 1.0<|η|<1.5 eTOF: -1.5<η<-0.9 EEMC: 1<η<2

EPD: 2<|η|<5 FTS: 2.5<η<4.0 FCS: 2.5<η<4.0

- Electron capability at two forward pseudo-rapidity regions $1.0 < |\eta| < 1.5$ and $2.5 < \eta < 4.0$
- For di-electron, (pseudo-)rapidity could be even between if two legs in different pseudo-rapidity window.

Heavy Flavor Opportunities at Forward

- Open heavy flavor
 - Electron from heavy flavor decay $1.0 < |\eta| < 1.5$ and $2.5 < \eta < 4.0$
 - Possible D-meson reconstruction (simulation needed)
- Quarkonium
 - Reconstruct via di-electron channel $1.0 < |\eta| < 1.5$ and $2.5 < \eta < 4.0$ and between
 - Upsilon \rightarrow ggg? (B.R. ~80% for 1S)
 - Radiative decay of quarkonium?

Workshop on STAR Forward Upgrade, 5/7-8, 2019, Qingdao, China

 $p+p\rightarrow 3$ -jets + X, $\sqrt{s}=510$ GeV

Open Heavy Flavor Production in p+p

Workshop on STAR Forward Upgrade, 5/7-8, 2019, Qingdao, China

Quarkonium production in p+p

- Rapidity distribution of quarkonia are not well understood
- Test the production mechanism of the simplest QCD systems

CNM Effects in p+A

- Gluon nPDF at small- and large-x (Very large uncertainty)
- Gluon saturation and energy loss
- Absorption of quarkonium
- Essential reference for heavy-ion collisions
- Important physics itself

PHENIX, PRL112, 252301 (2014) PHENIX, PRL111, 202301 (2013) 3 • HF μ⁻, backward (±11.0%) J/ψ , backward (±9.0%) PHENIX Vs_{NN}=200 GeV 0 J/ψ, forward (±9.0%) HF μ⁻, forward (±11.0%) 2.5 ψ(2s) ψ(1s) 1.2 < |y| < 2.22 He+A ц Ч 1.5 0.5 e+Au ψ(2s) ψ(1s) -p+Au co-mover -p+Al co-mover)+Al d+Au PRL 111 202301 (2013) 0.5 Centrality 0-20% -2 0 0 . . . rapidity 3 5 2 6 p_T (GeV/c)

Workshop on STAR Forward Upgrade, 5/7-8, 2019, Qingdao, China

PHENIX, PRC95, 034904 (2017)

HF Directed Flow in A+A

- D v₁ sensitive to initial tilted source, heavy quark transport properties and EM field effect
- Forward upgrades enlarge the pseudo-rapidity coverage of electron from heavy flavor decay

Quarkonium Suppression in A+A

J/ψ at RHIC

Upsilon(1S) @ LHC

Rapidity dependence of J/ψ and Upsilon suppression to be understood

Summary

- STAR HFT enabled important studies on open heavy flavor physics
- STAR MTD enabled important studies on quarkonium production
- STAR forward upgrades (iTPC, eTOF, EPD, FTS, FCS) provides great (and unique) opportunities for heavy flavor physics

Zebo Tang (USTC)

Compare to LHC

D[±] **Suppression**

Particle symbol	Quark content	Rest mass (MeV/c²)	Decay channel	Proper decay length (μm)
D ^o	cū	1864.84 ± 0.17	K⁻ π⁺ 3.89%	~120
D+	cd	1869.62 ± 0.20	K⁻ π⁺ π⁺ 8.98%	~312

- D[±]/D⁰ yield ratio in Au+Au
 @ 200GeV is consistent with
 Pb+Pb @ 5.02 TeV and
 PYTHIA (p+p@200 GeV)
- D[±] and D⁰ have the same suppression in heavy-ion collisions

D* Production

- D*+/D⁰ yield ratio in Au+Au @ 200GeV is consistent with Pb+Pb @ 5.02 TeV and PYTHIA (p+p@200 GeV)
- Ratio of the integral yields shows no strong centrality dependence
- No significant modification of D* spectral function