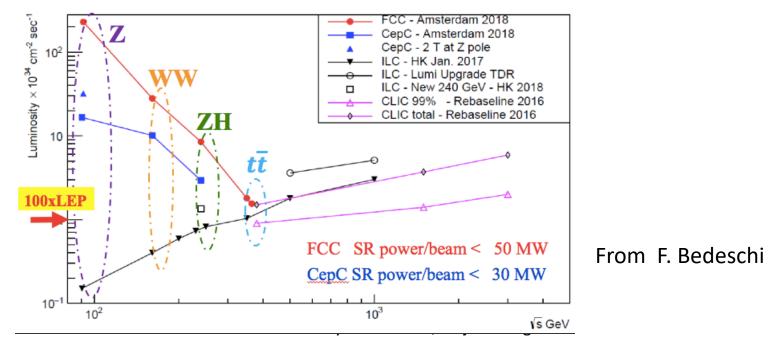


Institute of High Energy Physics Chinese Academy of Sciences

Electroweak Physics at CEPC

Zhijun Liang

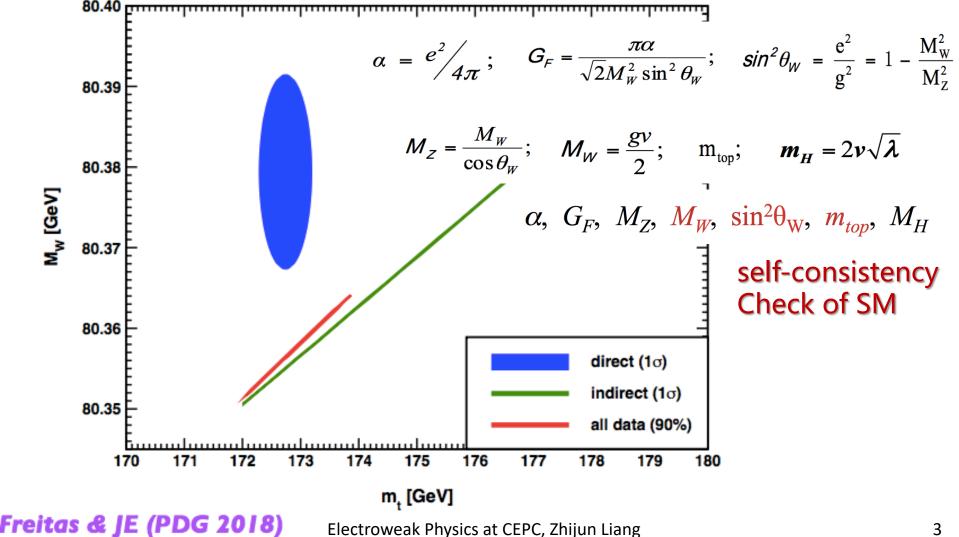
Institute of High Energy Physics , Chinese Academy of Science


CLHCP 2019, Dalian

Introduction to CEPC

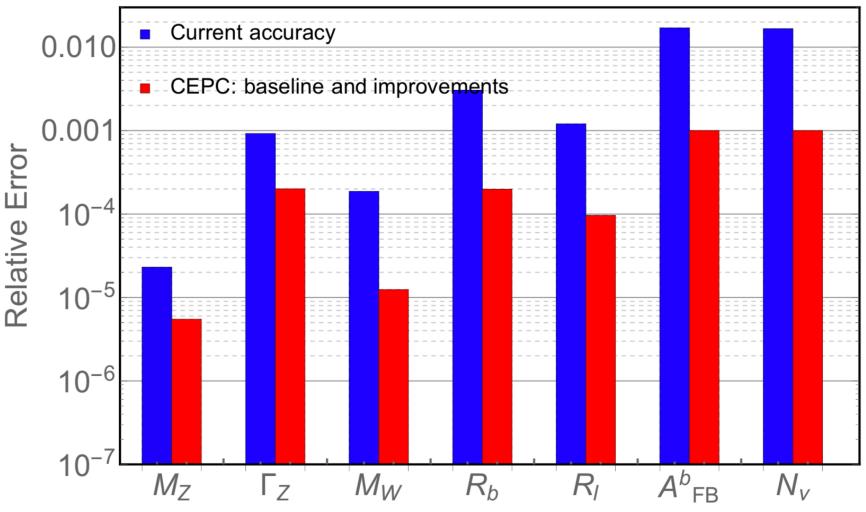
- CEPC is Higgs Factory (E_{cms}=240GeV, 10⁶ Higgs)
- CEPC is Z factory(E_{cms}~91GeV) ,electroweak precision physics at Z pole.
 - baseline L=1.6 X 10^{35} cm⁻²s⁻¹, Solenoid =3T, 3X10¹¹ Z boson, two years

L= 3.2 X 10^{35} cm⁻²s⁻¹ , Solenoid =2T , 6X10¹¹ Z boson


- WW threshold scan runs (~160GeV) are also expected.
 - One year, Total luminosity 2.6 ab⁻¹ 14M WW events

e⁺e⁻ Collider Luminosities

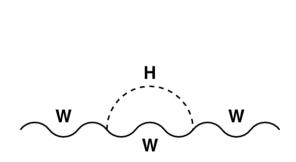
Status of electroweak global fit

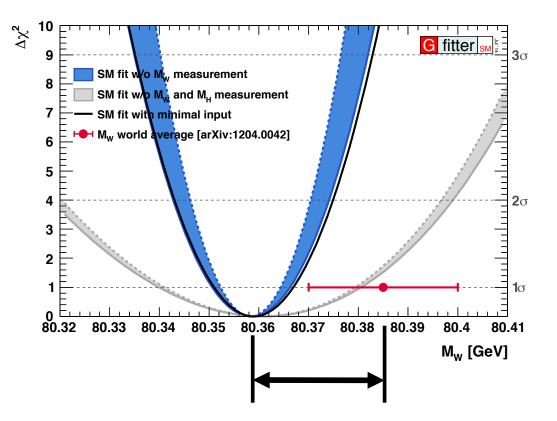

- Small tension in top mass and W mass.(2σ)
 - Between direct measurement and EWK fit

Prospect of CEPC EWK physics

Expect to have 1~2 order of magnitude better than current precision

Precision Electroweak Measurements at the CEPC

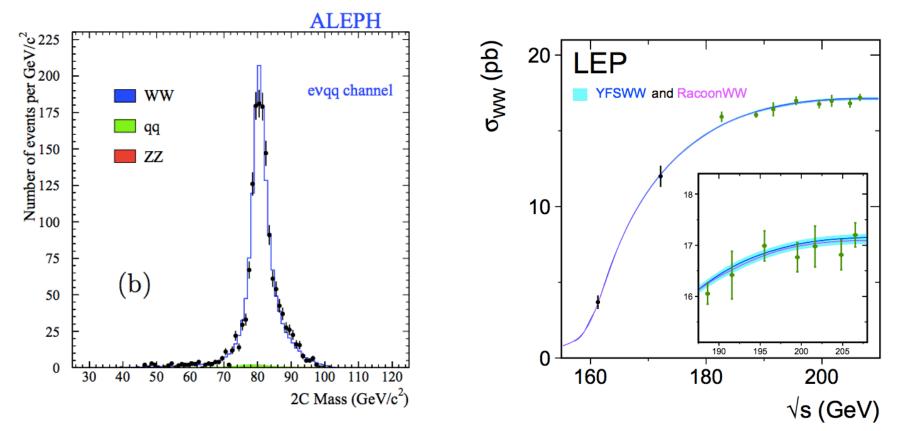



Electroweak Physics at CEPC, Zhijun Liang

- Introduction to CEPC
- W physics
- Z pole physics

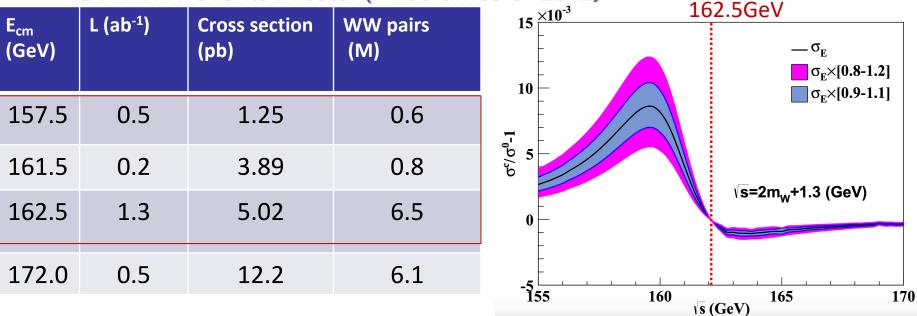
Motivation

- Small tension in weak mixing angle and W mass.(2σ)
 - Between direct measurement and EWK fit prediction
 - Indirect search for new physics



W mass measurement in lepton collider

• Two approaches to measure W mass at lepton collider:


Direct measurement performed in ZH runs (240GeV) Precision 2~3MeV WW threshold scan WW threshold runs (157~172GeV) Expected Precision 1MeV level

Electroweak Physics at CEPC, Zhijun Liang

WW threshold scan – CEPC plan

- Collaborate with Fcc-ee for joint Fcc-ee and CEPC publication
 - 157.5, 161.5, 162.5 (W mass, W width measurements)
 - 172.0 GeV (α_{QCD} (m_W) measurement, Br (W->had), CKM |Vcs|)
 - 14M WW events in total (>400 times of LEP2)

arXiv.org > hep-ex > arXiv:1812.09855

High Energy Physics - Experiment

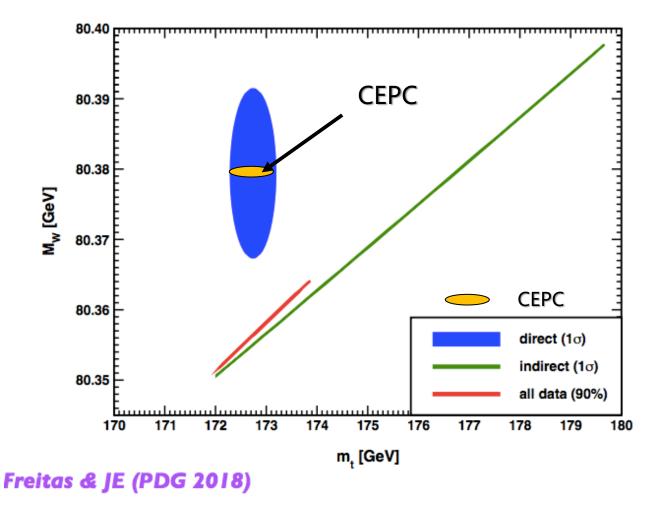
Data-taking strategy for the precise measurement of the W boson mass with threshold scan at circular electron positron colliders

P. X. Shen, P. Azzurri, M. Boonekamp, P. Z. Lai, B. Li, G. Li, H. N. Li, Z. J. Liang, B. Liu, J. M. Qian, L. S. Shi, C. X. Yu

Electroweak Physics at CEPC, Zhijun Liang

WW threshold scan-systematics unc.

- Expected 1MeV precision in W mass measurement
 - Dominated by statistics uncertainty.
 - Leading syst. (0.5MeV): beam energy syst.

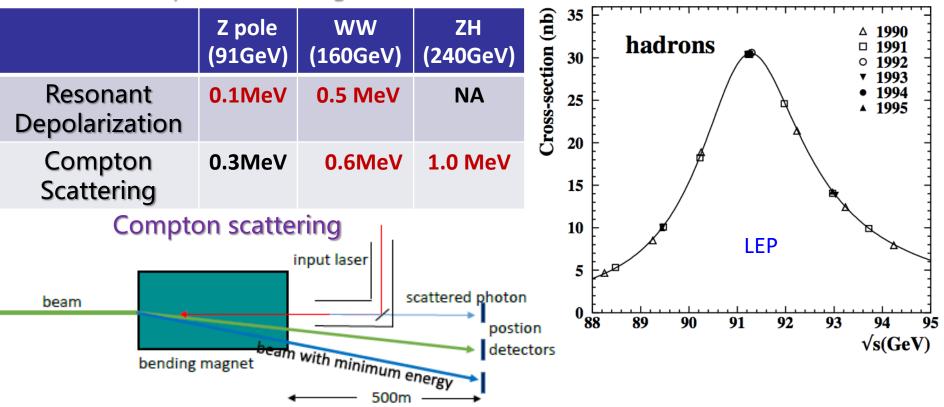

Statistics unc. on W mass Vs Luminosity

Observable	m_W	Γ_W	$ \begin{array}{c} & & & & \Delta m_{\rm W} ({\rm mass \ only}) \\ & & & & \Delta \Gamma_{\rm W} ({\rm width \ only}) \\ & & & & \Delta m_{\rm W} ({\rm mass \ and \ width}) \end{array} $
Source	Uncertair	nty (MeV)	$4 = \frac{1}{1000} \frac{1}{$
Statistics	0.8	2.7	
Beam energy	0.4	0.6	Stat (N
Beam spread	_	0.9	
Corr. syst.	0.4	0.2	1
Total	1.0	2.8	
			2.6 ab ⁻¹ ^{L (ab⁻¹)}

arxiv: 1812.09855

Prospect of CEPC W mass measurement

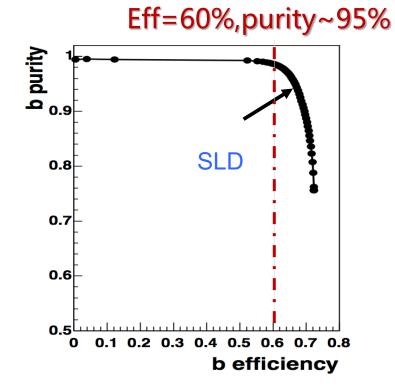
- CEPC can improve current precision of W mass by one order of magnitude
 - Good physics potential for BSM physics from indirect search

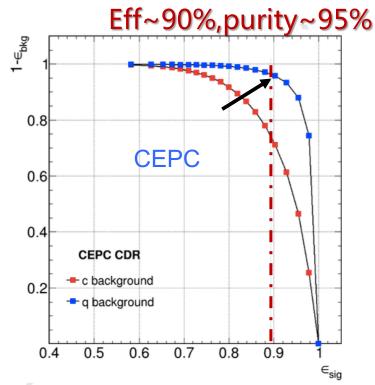


Electroweak Physics at CEPC, Zhijun Liang

- Introduction to CEPC
- Z pole physics
- W physics

Z mass measurement

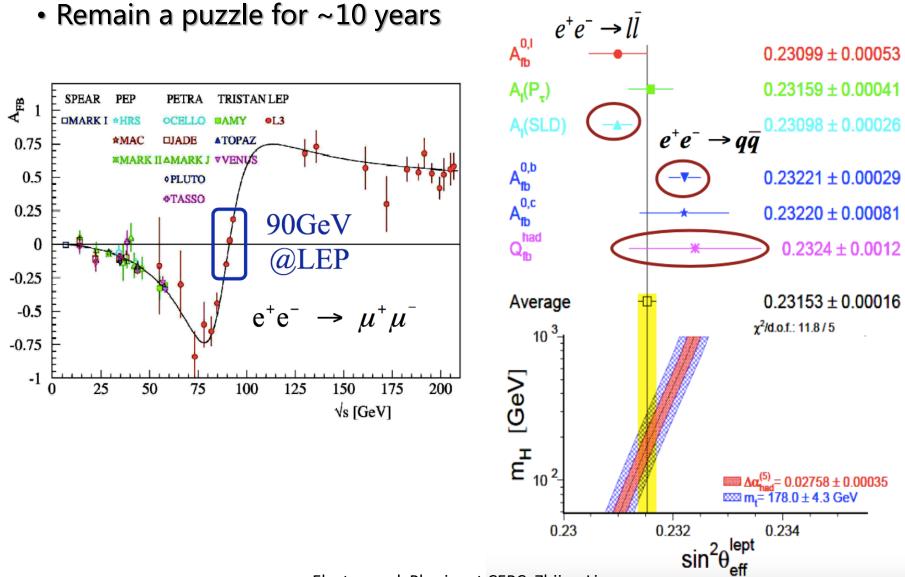

- LEP precision : 91.1876±0.0021 GeV
- CEPC goal : 0.5 MeV (CDR) → 0.1MeV (TDR)
 - Beam energy uncertainty is major systematics
 - Resonant depolarization approach by LEP \rightarrow <0.1MeV
 - Compton scattering → <0.3 MeV



$\frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to had)}$ Branching ratio (R^b)

- LEP measurement 0.21594 ±0.00066
 - Syst error : ~0.2%
- CEPC

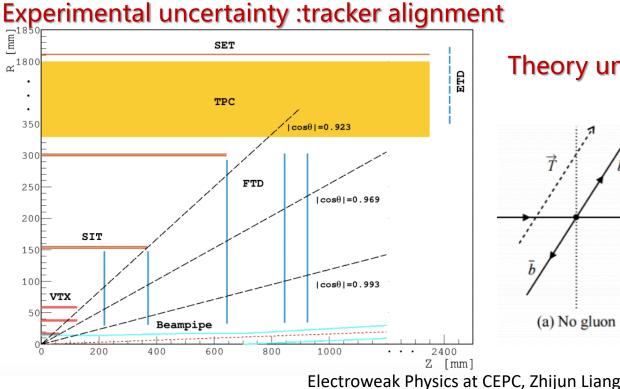
- Expect 20~30% higher B tagging efficiency than SLD
- Theory uncertainty (gluon splitting ..): need input from theorists



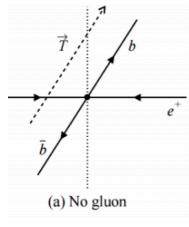
 $C_b = \frac{\varepsilon_{2jet-tagged}}{(\varepsilon_{1jet-tagged})^2}$

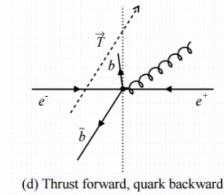
Weak mixing angle

• Some tension between SLD and LEP results ($\sim 3\sigma$)

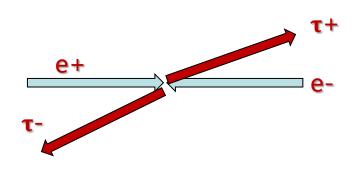

Electroweak Physics at CEPC, Zhijun Liang

lept


sin

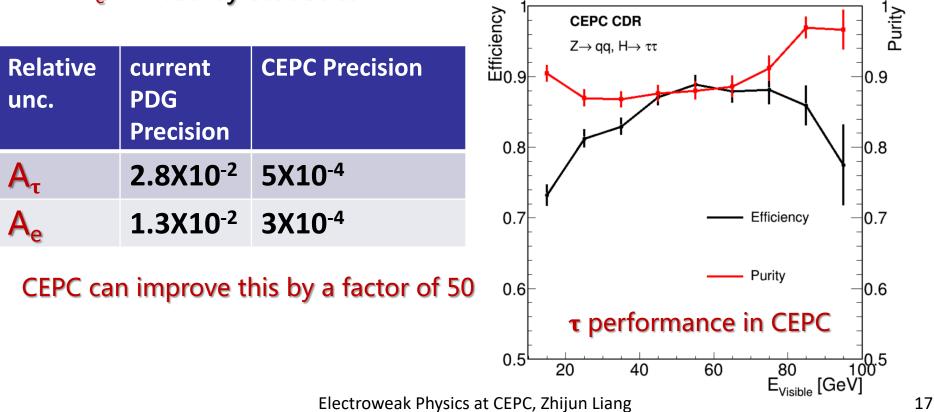

Backward-forward asymmetry in Z->µµ

- LEP measurement : 0.0169 +-0.00130
- **CEPC** expected: +-0.00002
 - CEPC has potential to improve it by a factor of 50.
 - Acceptance systematics (larger detector coverage, smaller syst.)
- Major systematics (absolute value.)
 - Beam energy systematics (1e⁻⁵, assuming 100keV E_{beam} unc.)
 - Muon angular resolution (1e⁻⁵ level)



Theory uncertainty: gluon emission

A_e and A_τ: tau polarization

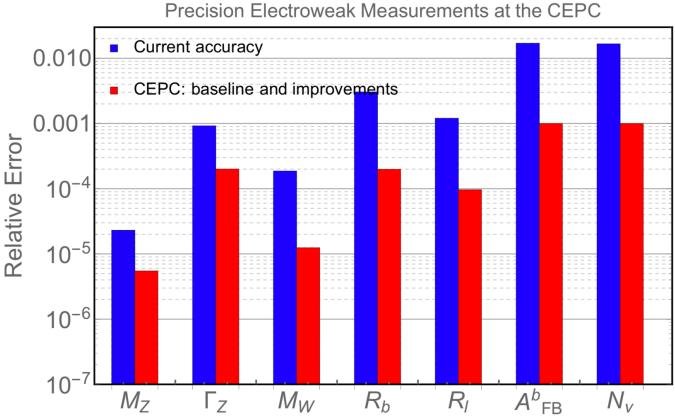


- $A_{\rm FB} = \frac{\sigma_{\rm F} \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$ $A_{\rm LR} = \frac{\sigma_{\rm L} \sigma_{\rm R}}{\sigma_{\rm L} + \sigma_{\rm R}} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle}$ $A_{\rm LRFB} = \frac{(\sigma_{\rm F} \sigma_{\rm B})_{\rm L} (\sigma_{\rm F} \sigma_{\rm B})_{\rm R}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm L} + (\sigma_{\rm F} + \sigma_{\rm B})_{\rm R}} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle}$
- Weak mixing angle $(\sigma_{\rm F} + \sigma_{\rm B})_{\rm L} + (\sigma_{\rm F} + \sigma_{\rm B})_{\rm R} \langle | \mathcal{P}_{\rm e} \rangle$ – extracted from A_e and A_t using tau polarization: more precise

	Number	Purity of	
τ decay mode	selected decays	the samples $(\%)$	
$\tau \to e \nu_e \nu_\tau$	18434	89.4 ± 0.1	$A_{\rm LRFB}$
$ au o \mu u_\mu u_ au$	19811	94.3 ± 0.1	$> A_{a}$ and A_{a}
$ au o \pi/K \nu_{ au}$	14850	73.2 ± 0.1	$P_{\tau}(\cos\theta)$
$\tau \to \rho \nu_{\tau}$	26548	75.4 ± 0.1	
$ au o a_1 \nu_{ au}$	9446	53.2 ± 0.2	

A_e and A_τ in $Z \rightarrow \tau \tau$: systematics

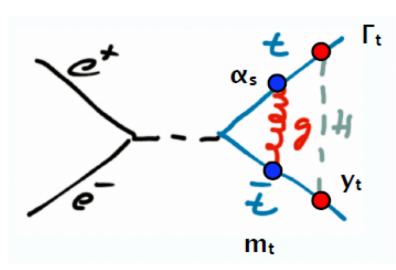
- Current precision
 - A_e : 0.1515 ± 0.0019 (PDG)
 - A_{τ} : 0.143±0.004 (PDG)
- CEPC expected :
 - A_{τ} Key systematics is from EM scale, and τ identification
 - A_e limited by statistics

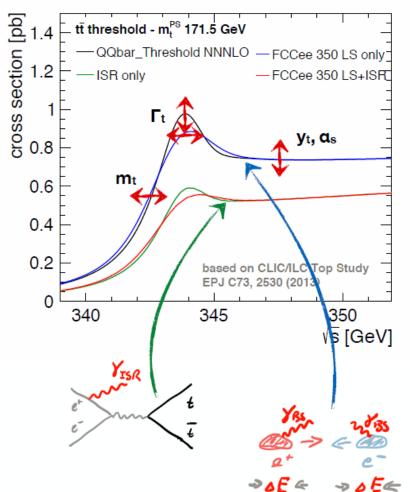


Summary

Potential of electroweak measurement at CEPC

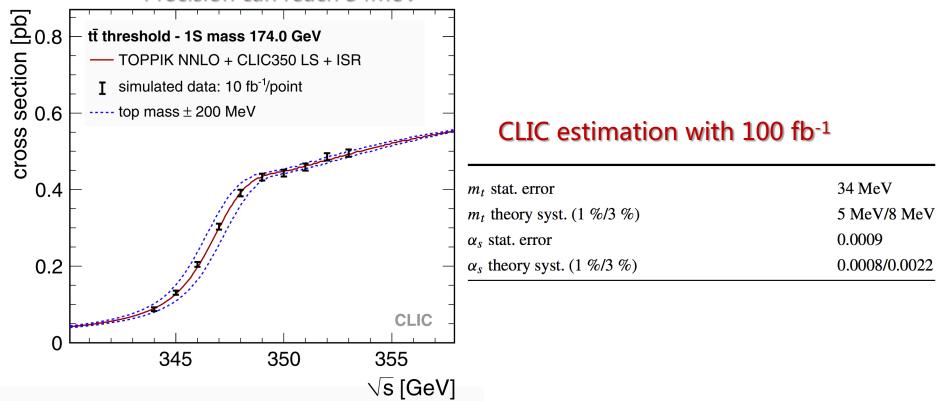
1~2 order of magnitude better than current precision


- Two years at Z pole: 3(6) X10¹¹ Z boson
- One year WW runs: 10⁸ WW pairs (10⁷ WW @ 160GeV)


Electroweak Physics at CEPC, Zhijun Liang

Top threshold scan

- Top threshold scan is not in current CEPC program
- The idea from CLIC
- Top threshold cross-section depends on:
 - top mass
 - top width (lifetime)
 - top-Higgs coupling
 - αQCD


Thanks to discussion and slides from Alain Blondel Study by Frank Simon (CLIC/ILC study, EPJC 73,(2013)2!

Electroweak Physics at CEPC, Zhijun Liang

Top threshold scan

- CLIC Strategy:
 - Need a rough scan to measure the top mass to 100 MeV. (5-10 fb⁻¹)
 - Fix the final scan points
 - since there are four parameters to fix, need at least 4 scan points
 - Scanning range 340GeV ~355GeV
 - Precision can reach 34MeV

CEPC EWK input to ECFA

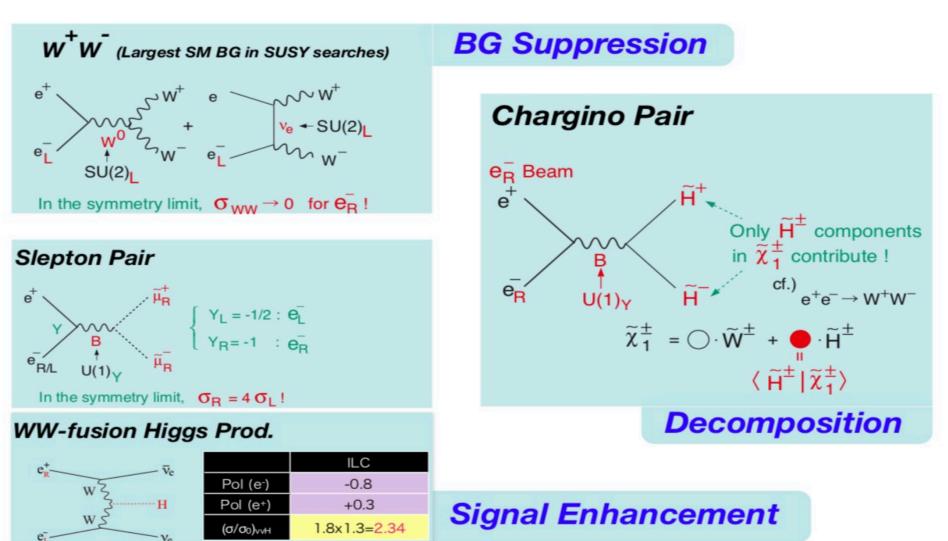
	Γ_Z	$\sigma_{ m had}$		$A_e \ (\tau \ \mathrm{pol})$	$A_{\tau} (\tau \text{ pol})$
CEPC	$0.5\mathrm{MeV}$	$0.005\mathrm{nb}$		0.0003	0.0005
FCC-ee	$0.1\mathrm{MeV}$	$0.005\mathrm{nb}$		_	—
	R_e	R_{μ}	R_{τ}	R_b	R_c
CEPC	0.0003	0.0001	0.0002	0.0002	0.001
FCC-ee	0.0003	0.00005	0.0001	0.0003	0.0015
	$A_{ m FB}^{0,e}$	$A_{ m FB}^{0,\mu}$	$A_{ m FB}^{0, au}$	$A_{ m FB}^{0,b}$	$A^{0,c}_{ m FB}$
CEPC	0.005	0.003	0.005	0.001	0.003
FCC-ee	—	—	_	_	—
(fitted)	A_e	A_{μ}	A_{τ}	A_b	A_c
CEPC	0.0003	0.003	0.0005	0.001	0.003
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

Table 1: A comparison of CEPC and FCC ee Z-pole inputs. All uncertainties are relative (normalized to 1) except for Γ_Z and σ_{had} . " τ pol" denotes that the measurement is from τ polarization in $Z \to \tau^+ \tau^-$. The 5 fitted asymmetry observables $(A_{e,\mu,\tau,b,c})$ are derived from a simutanous fit of all the A_{FB}^{0} observables as well as the A_e and A_{τ} from τ polarization.

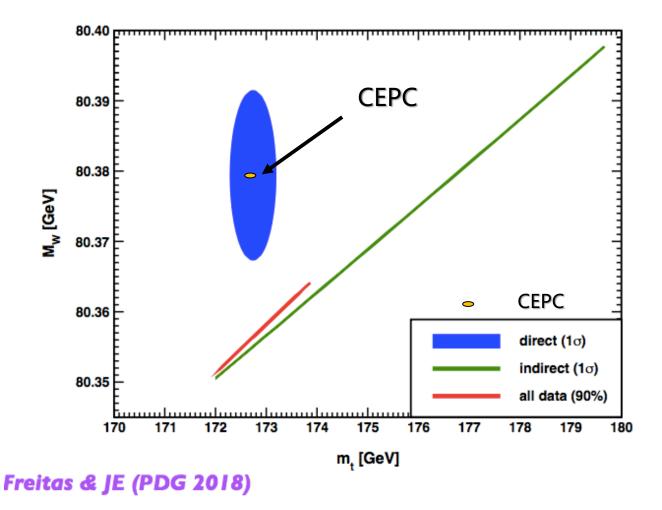
Discrepancy Due to statistics

doing check on systematics (tracker alignment ...) Plan to work with USTC 21

Beam polarization for Z pole ?


- What is Polarized beam collision ?
 - Usually mean longitudinal polarized beam for physics

Туре	Polarized beam collision	Beam energy measurement
Polarized Type	Longitudinal polarized	Transverse polarized
Fraction of polarization	>30% (50%)	5~10% is enough


Туре	Longitudinal polarized e-	Longitudinal polarized e+	Transverse polarized Beam
CEPC	To be discussed	To be discussed	Yes (Z,WW)
Fcc-ee	No	NO	Yes (Z,WW)
ILC	yes	yes	-

Polarized beam collision: motivation

Any other physics case for polarized beam collision in CEPC?

CEPC potential with top threshold scan

Electroweak Physics at CEPC, Zhijun Liang

Prospect of CEPC EWK physics

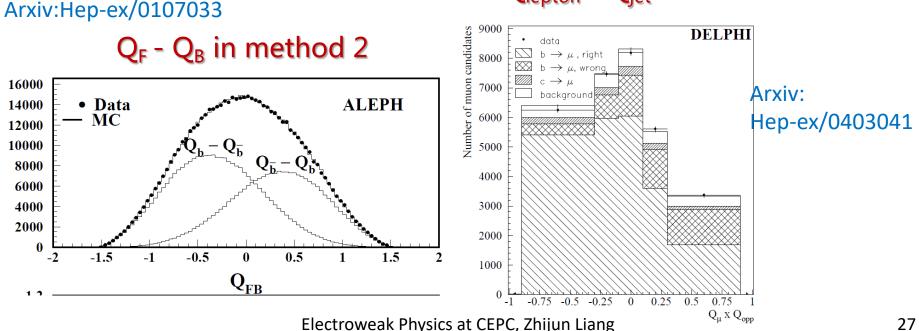
Expect to have 1~2 order of magnitude better than current precision

Observable	LEP precision	CEPC precision	CEPC runs	CEPC $\int \mathcal{L}dt$
m_Z	2 MeV	0.5 MeV	Z pole	8 ab^{-1}
$A^{0,b}_{FB}$	1.7%	0.1%	Z pole	8 ab^{-1}
$A^{0,\mu}_{FB}$	7.7%	0.3%	Z pole	8 ab^{-1}
$A_{FB}^{0,e}$	17%	0.5%	Z pole	8 ab^{-1}
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.001%	Z pole	8 ab^{-1}
R_b	0.3%	0.02%	Z pole	8 ab^{-1}
R_{μ}	0.2%	0.01%	Z pole	8 ab^{-1}
$N_{ u}$	1.7%	0.05%	ZH runs	5.6 ab^{-1}
m_W	33 MeV	2–3 MeV	ZH runs	5.6 ab^{-1}
m_W	33 MeV	1 MeV	WW threshold	2.6 ab^{-1}

Table 11.9: The expected precision in a selected set of EW precision measurements in CEPC and the comparison with the precision from LEP experiments. The CEPC accelerator running mode and total integrated luminosity expected for each measurement are also listed.

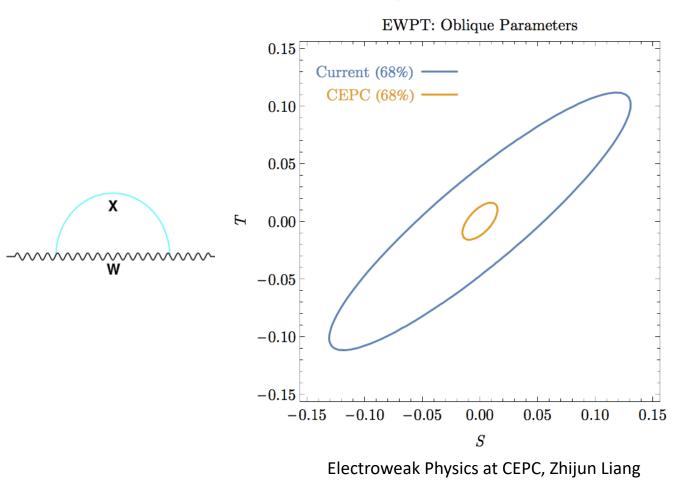
Electroweak global fit

• Review of the key electroweak constant


Fundamental constant	δx/x	measurements	
$\alpha = 1/137.035999139(31)$	1×10-10	$e^{\pm}g_2$	Z pole
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10-6	$\mu^{\pm} lifetime$	
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10-5	LEP	Z pole
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC	WW run
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10-4	LEP/SLD	Z pole
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10-3	Tevatron/LHC	
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC	ZH runs

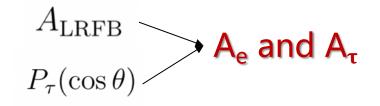
From PDG2018

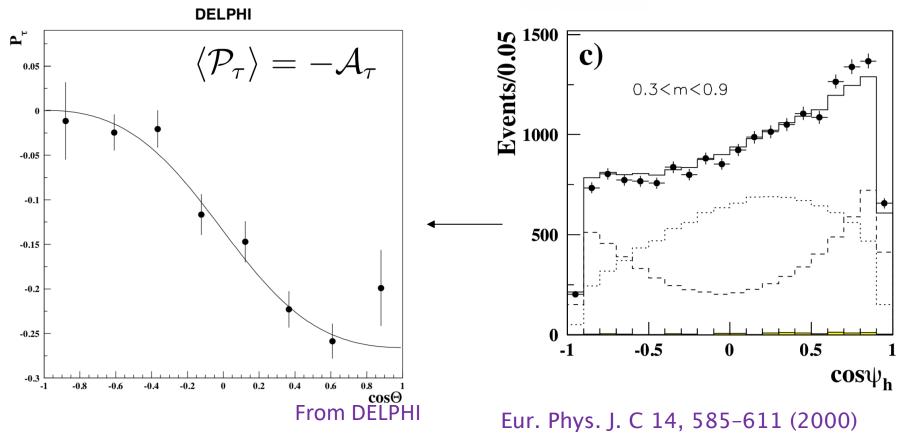
Backward-forward asymmetry


- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets, use event thrust to define the forward
 - Use jet charge difference (Q_F Q_B)

Q_{lepton} - Q_{jet} in method 1

Constraint to new physics

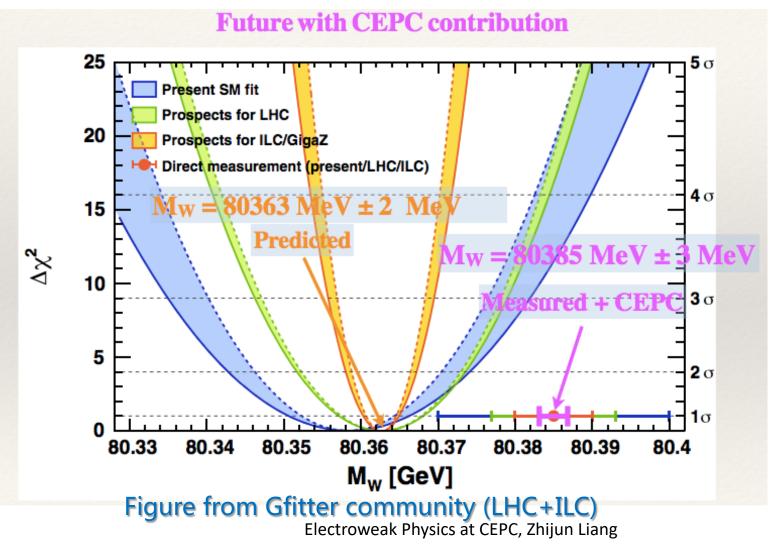

- Oblique parameter S,T,U : corrections to gauge-boson self-energies
 - S and T (U) correspond to dimension 6 (8) operators
- Constraint to Oblique parameter from CEPC EWK measurements will be about one order of magnitude better than current constraint.



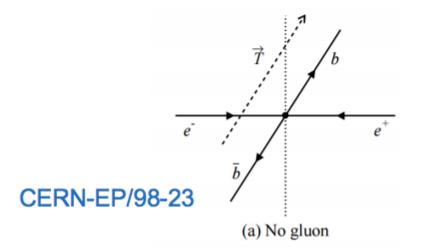
$A_e \text{ and } A_\tau \text{ in } Z \rightarrow \tau \tau$

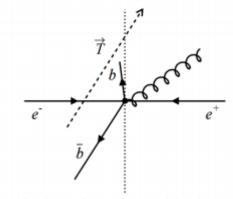
Tau polarization can be measured through its decay product

$$P_{\tau}(\cos\theta) = -\frac{\mathcal{A}_{\tau}(1+\cos^2\theta) + \mathcal{A}_e(2\cos\theta)}{(1+\cos^2\theta) + \frac{4}{3}\mathcal{A}_{fb}(2\cos\theta)}$$



Electroweak Physics at CEPC, Zhijun Liang


Prospect of CEPC W mass measurement


- CEPC can improve current precision of W mass by one order of magnitude
 - A possible BSM physics can be discovered in the future

Backward-forward asymmetry

- Uncertainty Afb_b due to QCD correction to Thrust
 - Higher order QCD effect is major systematics

(d) Thrust forward, quark backward

Error source	$C_{ m QCD}^{ m quark}$ (%)		$C_{\rm QCD}^{\rm part,T}$ (%)	
	$b\bar{b}$	$c\bar{c}$	$b\bar{b}$	$c\bar{c}$
Theoretical error on m_b or m_c	0.23	0.11	0.15	0.08
$\alpha_s(m_Z^2) \ (0.119 \pm 0.004)$	0.12	0.16	0.12	0.16
Higher order corrections	0.27	0.66	0.27	0.66
Total error	0.37	0.69	0.33	0.68

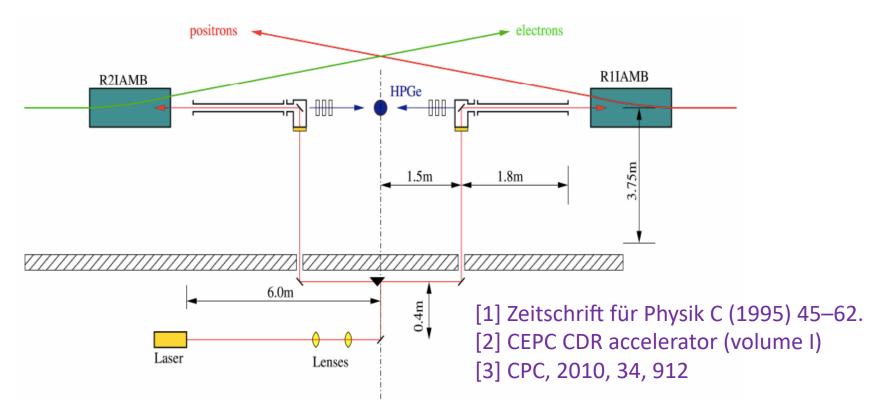
Motivation for CEPC electroweak physics

- need more precision in
 - W mass, Top mass and weak mixing angle
- CEPC can provide more precise measurement for
 - W/Z and Higgs mass and weak mixing angle

Fundamental constant	δx/x	measurements
$\alpha = 1/137.035999139 (31)$ From PDG201	1×10 ⁻¹⁰	$\mathrm{e}^{\pm}g_{2}$
$G_F = 1.1663787 \ (6) \times 10^{-5} \ \text{GeV}^{-2}$	1×10-6	μ^{\pm} lifetime
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10-5	LEP
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10-4	LEP/SLD
$m_{top} = 172.74 \pm 0.46 \text{GeV}$	3×10-3	Tevatron/LHC
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC

Number of neutrino generation (N_v)

• LEP measurement :

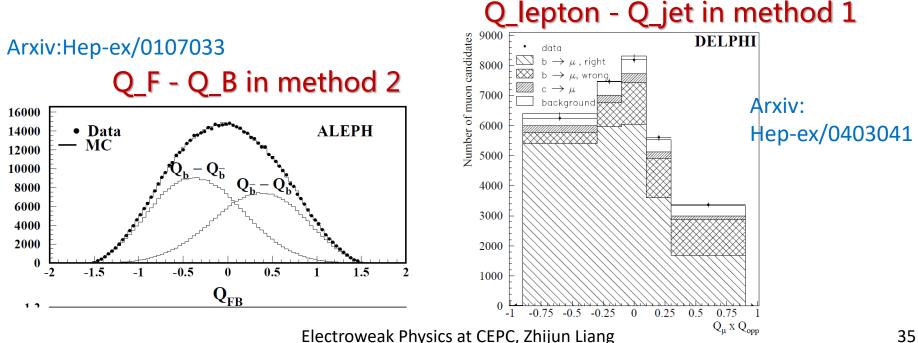

 $e^+e^- \rightarrow \nu \bar{\nu} \gamma$

- Indirect measurement (Z line shape method): 2.984+-0.008
- Direct measurement (neutrino counting method): 2.92+-0.05
 - Stat error (1.7%), Syst error (1.4%)
- CEPC measurement :
 - Focus on direct measurement, Expected Syst error (~0.2%)
 - High granularity in calorimeter can help photon identification
 - Detector readout time and Pileup is also key for Missing energy
 - Need focus on improving photon energy scale in next step

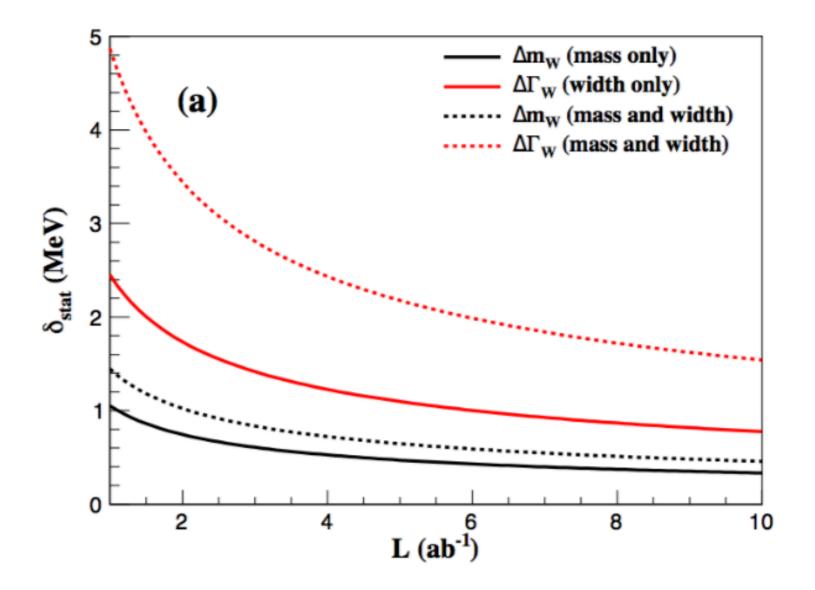
Systematics source	LEP	CEPC
Photon trigger and Identification efficiency	~0.5%	<0.1%
Calorimeter energy scale	0.3~0.5%	<0.2%

Z mass measurement (2)

- Syst uncertainty: ~0.5 MeV
 - Beam energy uncertainty is major systematics
 - Resonant depolarization approach by LEP [1] \rightarrow <0.5MeV
 - Compton backscattering [2] \rightarrow 2~5 MeV
 - Radiation return , Z($\mu\mu$) γ events \rightarrow 2~5MeV



Backward-forward asymmetry



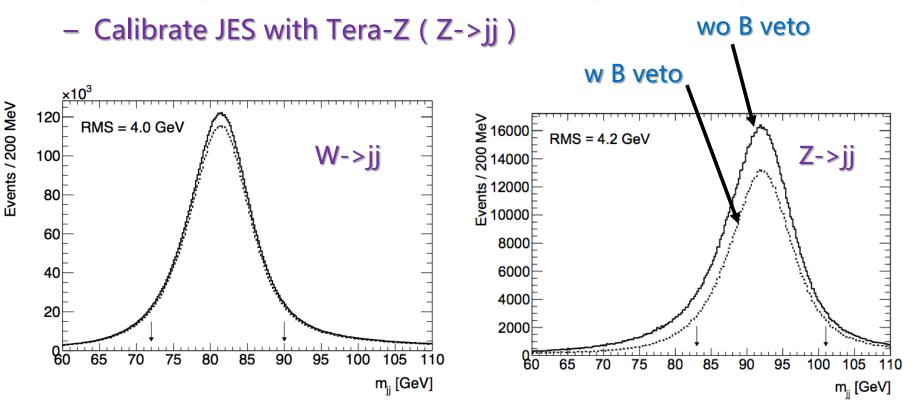
- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay CEPC precision 0.1% ,LEP precision ~2% (stat dominated) - Main systematics is B hadron decay branching ratio
 - Method 2: jet charge method, Inclusive b jet (LEP precision 1.2%)
 - use event Thrust to define the forward and background

Use jet charge difference (Q_F - Q_B)

Statistics error on W mass Vs Luminosity

WW threshold scan – CEPC plan

- WW threshold scan running proposal
 - Assuming one year data taking in WW threshold (2.6 ab⁻¹)
 - Four energy scan points:
 - 157.5, 161.5, 162.5(W mass, W width measurements)
 - 172.0 GeV (α_{QCD} (m_W) measurement, Br (W->had), CKM |Vcs|) ٠
 - 14M WW events in total


400 times larger than LEP2 comparing WW runs

E _{cm} (GeV)	Lumiosity (ab ⁻¹)	Cross section (pb)	Number of WW pairs (M)	(qd) 30	LEP
157.5	0.5	1.25	0.6	^{MM} _D 20-	
161.5	0.2	3.89	0.8	-	
162.5	1.3	5.02	6.5	10-	YFSWW/RacoonWW no ZWW vertex (Gentle)
172.0	0.5	12.2	6.1	0	only v _e exchange (Gentle)
		Electroweak Pr	vsics at CEPC. Zhiiun Liang		160 180 200 √s (GeV <u>}</u> 7

Electroweak Physics at CEPC, Zhijun Liang

W mass direct measurement

- Reconstruct di-jet mass from WW->lvqq events in ZH run
 - Not affect by beam energy uncertainty
 - Major systematics is Jet energy scale (JES) uncertainty (2~3 MeV)
 - · Mainly from Jet flavor composition and jet flavor response

Electroweak Physics at CEPC, Zhijun Liang