Search for Higgs production in association with top quark pair in multilepton final state with 80fb⁻¹ data collected by ATLAS detector

Based on conf note: <u>ATLAS-CONF-2019-045</u>

Speaker: Xuan Yang Shandong University CLHCP 2019 Dalian

Outline

- Motivation
- Analysis overview
- Background estimate
- Result

Motivation

- Direct measurement of the Yukawa coupling between top quark and Higgs boson at tree level via ttH cross section measurement
- ttH prodution cross section at 13 TeV is ~1 % of total Higgs production cross section
- Multilepton signatures at decay modes with >= 1leptons (WW, ττ, ZZ) from both top quark and Higgs boson decays

Number of light *l* What we have in multilepton:

- 2/3/4 leptons (e/µ)
- 1 or 2 hadronic taus (τ_had)
- several jets (usually >=2)
- in which some are b-tagged (usually >=1)

The selections among different sub-channels are **orthogonal at object level** to avoid overlaps and to allow combination.

Backgrounds

- Reducible backgrounds: Events with non-prompt leptons
 - Non-prompt leptons
 - Fake tau
 - Charge flip

Important bkg in most channels

 Irreducible background: Can really mimic the signal topology, with prompt leptons

Non-prompt tau

- Mainly arise from ttbar/ttV events with a jet mis-identified as hadronic tau
- 2lss1tau/3l1tau: Estimate from a dedicated CR: requiring OS lepton pair, >=3 jets, >=1 bjets, 1 hadronic tau
 - A scale factor (Data/MC) is derived to correct possible mismodelling of the fake tau rate in simulation

Number of Tracks	25-45(50) GeV	45(50) - 70(75) GeV	> 70(75) GeV
1 prong	$1.05 \pm 0.04 \pm 0.05$	$0.94 \pm 0.08 \pm 0.21$	$0.64 \pm 0.10 \pm 0.07$
3 prong	$1.25 \pm 0.10 \pm 0.41$	$1.30 \pm 0.32 \pm 0.72$	$0.52 \pm 0.30 \pm 0.64$

- 1l2tau: measured from a 1l2tau CR with SS tau pair (OS in SR)
 - $\circ~$ Jets have identical chance to be reconstructed as positve or negative charged tau
 - The estimation is taken from the SS data with small corrections from simulation samples (truth tau contribution)

Charge Mis-assignment

- The charge of electrons can be mis-identified due to:
 - \circ $\,$ Wrong assignment of EM cluster $\,$
 - Slightly curved track that induces measurement error

$$N^{os} = (1 - 2\varepsilon + 2\varepsilon^{2})$$

$$N^{ss} = 2\varepsilon(1 - \varepsilon)$$

$$sis the rate of a single electron to be mis-identified, measured from Z->ee events. N is the total number of true OS events$$

$$N^{ss} = \frac{\varepsilon}{1 - \varepsilon} N^{os} \text{ for the } e\mu \text{ channel,}$$

Leptons MVA

- To suppress the most important background: non-prompt leptons from semi-leptonic b decay
- Implement a new variable to reject non-prompt leptons ->
 PromptLeptonVeto(PLV)

PLV is a BDT trained with:

- lepton and overlapping track jets properties
- lepton track/calorimeter isolation variables

Details in Fudong He's talk yesterday!

Selection eff. of PLV for muon. Ratio plot shows Data/MC agreement

Mainly arise from: Material photon conversion (MatCO) Katerial photon conversion (MatCO)

- In last round, Data-driven method (Matrix method/Fake factor) was used for fake lepton estimation.
- Change to a semi-DD method, **template fit**, to estimate fake leptons.
 - Shape from MC simulation
 - Normalization from fit to Data
- Hence re-define the analysis strategy

Event categorization (for 21/31)

• Events are categorized to control:

- \circ ttW enriched regions
- Internal photon conversion (IntCO) -> decay radius < 20 mm
- \circ Material photon conversion -> decay radius > 20 mm
- Non-prompt leponts from semi-leptonic hadron decay
- Signal regions
- Each of those components is assigned by a normalization factor, and determined in a simultaneous fit to data
- ttW is also left free-float in the fit. A factor of 1.2 is applied in addition to the normal ttW cross section to account for the missing 1j@NLO and EW corrections in YR4

Event categorization (for 21/31)

- "High Njet region":
 - $\circ~$ 21: Based on a combination of 2 BDTs (vs. ttV/ vs. ttbar)
 - 3l: a multi-dimensional BDT (vs. ttW/fakes/ttZ/VV)

2ℓSS0τ [≥4j, ≥1bj]

3ℓ0τ [≥2j, ≥1bj]

Event categorization (for 21/31)

- "Low Njet region":
 - 2-3 jets (>=4 in High Njet), enriched in non-prompt leptons and ttW
- Conversion CRs:
 - \circ >= 1 electron passing material / internal conversion selection

Final fit setup

Signal extraction

- For channels with high statistics, using MVA methods
 2lss, 3l, 1l2tau
- For channels with limited statistics, using event counting
 - 2lss1tau, 3l1tau, 4l (One BDT is trained to define SR)

		Non-tau channels	Tau channels			
	2ℓSS	3ℓ	4ℓ	$1\ell+2\tau_{had}$	$2\ell SS+1\tau_{had}$	$3\ell + 1\tau_{had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	tīZ / -	tī		1121
Discriminant	2D BDT	5D BDT	Event count	BDT	Event count	Event count
Number of bins in SR	4	5	1/1	3	1	1
Control regions	6	4	-	-	-	122

MVA distribution

Good agreement after fit to data. Prefit distribution is shown in dash line.

Systematic uncertainties

Uncertainty source	$\Delta \hat{\mu}$		
Jet energy scale and resolution	+0.13	-0.13	
$t\bar{t}(Z/\gamma^*)$ (high mass) modelling	+0.09	-0.09	
<i>ttW</i> modelling (radiation, generator, PDF)	+0.08	-0.08	
Fake τ_{had} background estimate	+0.07	-0.07	
<i>tTW</i> modelling (extrapolation)	+0.05	-0.05	
$t\bar{t}H$ cross section	+0.05	-0.05	
Simulation sample size	+0.05	-0.05	
$t\bar{t}H$ modelling	+0.04	-0.04	
Other background modelling	+0.04	-0.04	
Jet flavour tagging and τ_{had} identification	+0.04	-0.04	
Other experimental uncertainties	+0.03	-0.03	
Luminosity	+0.03	-0.03	
Diboson modelling	+0.01	-0.01	
$t\bar{t}\gamma^*$ (low mass) modelling	+0.01	-0.01	
Charge misassignment	+0.01	-0.01	
Template fit (non-prompt leptons)	+0.01	-0.01	
Total systematic uncertainty	+0.25	-0.22	
Intrinsic statistical uncertainty	+0.23	-0.22	
$t\bar{t}W$ normalisation factors	+0.10	-0.10	
Non-prompt leptons normalisation factors (HF, material conversions)	+0.05	-0.05	
Total statistical uncertainty	+0.26	-0.25	
Total uncertainty	+0.36	-0.33	

Pre-fit impact on μ : $\theta = \theta + \Delta \theta$ $\theta = \theta - \Delta \theta$ Post-fit impact on μ : $\theta = \theta + \Delta \theta$ $\theta = \theta - \Delta \theta$ -0.15 -0.1 -0.15 -0.1 ATLAS Prel fs = 13 TeV, 7 $t\bar{t}W$ norm. factor: 3ℓ channel Jet energy scale: η intercalib. NP I $t\bar{t}Z$ cross section: scale variations

 $t\bar{t}Z$ cross section: scale variations $t\bar{t}W$ modelling: scale variations $t\bar{t}W$ norm. factor: 2\ellSS channel, 2-3 jets Fake τ_{had} bkg. stat: $1\ell^2\tau$ channel $t\bar{t}H$ cross section: scale variations Jet energy scale: pileup $t\bar{t}W$ modelling: charge extrapolation $t\bar{t}W$ norm. factor: 2\ellSS channel, ≥ 4 jets Top rare decay cross-section Jet energy scale: flavour response $t\bar{t}H$ modelling: parton shower $t\bar{t}W$ modelling: alternative generator 4-top cross section

- largest uncertainties from ttW/ttll modelling
- reduced impact from fake
- JES/JER still important

NF(ttW) -> already scaled by 1.2:

• 21 LowNj: 1.56^{+0.30}_{-0.28}

ℓµ

 $N_{b} = 1$

le

N_b≥2

lu

 $N_b \ge 2$

Data / Pred.

1.5

0.5

n

le

 $N_b = 1$

Data Still prefer to pull up ttW even after taking into account missing scale factor of 1.2 from YR4!

Results

Observed (expected) significance w.r.t bkg only hypothesis: **1.8** σ (3.1 σ)

Conclusion

- Updated results with 80/fb data collected by ATLAS is published recently (ATLAS-CONF-2019-045)
- Re-designed event categorization and new semi-DD method for fake lepton estimation
- Also free-float ttW at the same time, and measured NF > 1
- Measured ttH cross section agree with SM prediction within uncertainty

$$\hat{\sigma}(t\bar{t}H) = 294^{+132}_{-127} (\text{stat.})^{+94}_{-74} (\text{exp.})^{+73}_{-56} (\text{bkg. th.})^{+41}_{-39} (\text{sig. th.}) \text{ fb} = 294^{+182}_{-162} \text{ fb.}$$
 V.S. $\sigma(t\bar{t}H) = 507^{+35}_{-50} \text{ fb}$

Exp.

Theory

BACKUP

ttw: higher order QCD and EW corrections

- A normalisation factor of **1.2** applied on top of the YR4 cross section for ttW
- Origin of the correction factor:
 - Factor 1.11 to account for missing QCD corrections in higher order XS
 - ttW+0j@NLO → ttW+0,1j@NLO
 - estimated using dedicated samples generated with Sherpa 2.2.1 using the MEPS@NLO prescription, and cross-checked with the NLO generator MadGraph5_aMC@NLO 2.2.1 using the FxFx prescription
 - Factor 1.09 to account for missing EW corrections
 - [1711.02116] shows "subleading" NLO EWK corrections, not included in YR4 XS, can be large
 - om Tamara's slide primarily because of the large **NLO3 term** driven by the ttW+1-jet diagrams with a Higgs boson exchanged in the t-channel

TeV	$\delta[\%]$	$\mu = H_T/2$
	LO_2	-
	LO_3	0.9
	NLO ₁	50.0(25.7)
m	NLO_2	-4.2(-4.6)
-	NLO_3	12.2 (9.1)
	NLO_4	0.04(-0.02)

https://indico.cern.ch/event/79257 6/contributions/3405586/attachm ents/1913568/3162767/09242019 ttH ATLASCMS Top2019 TVS .pdf

Post-fit distributions

SR

22

ttH (multilepton): object definition summary

	e			μ			
	L	L*	Т	T*	L	L*	T/T^*
Identification	Loose		Tight		Loose		Medium
Isolation	No		Yes		No	Yes	
Non-prompt lepton veto	No		Yes		No		Yes
Charge misidentification veto	No		Yes		N/A		/A
Material/internal conversion veto	No			Yes	N/A		/A
Lepton $ \eta $	< 2.47		2.47 < 2		< 2.5		2.5
$ d_0 /\sigma_{d_0}$	<		< 5		< 3		3
$ z_0 \sin \theta $	< 0.5 mm						

Thad

Medium BDT ID to reject jets (1M, 1T in 1ℓ+2⊤) p_T > 25 GeV

 $p_T > 25 \text{ GeV}$

BDT to reject el faking τ

τ-μ overlap removal

b-jet veto

 τ_{had} vertex is PV

Jets $p_T > 25 \text{ GeV}$

BJets MV2c10 70% WP

- Material conversion candidates have a reconstructed displaced vertex with radius r > 20 mm that includes the track associated with the electron
 - The invariant mass of the associated track and the closest (in $\Delta \eta$) opposite-charge track reconstructed in the silicon detector, calculated at the conversion vertex, is required to be < 100 MeV.
- Internal conversion candidates are required to fail the requirements for material conversions, and the di-track invariant mass, this time calculated at the primary vertex, is also required to be < 100 MeV.
- Very tight electron candidates are tight electrons that fail the internal conversion and material conversion requirements, and have $|\eta| < 2$.
 - The latter requirement rejects a small fraction of electrons with a *large charge misidentification rate* because of the limited number of hits used in the track reconstruction.

https://indico.cern.ch/event/79257 6/contributions/3405586/attachm ents/1913568/3162767/09242019 _ttH_ATLASCMS_Top2019_TVS .pdf

Event selection

Channel	Selection criteria					
Common	$N_{\text{jets}} \ge 2 \text{ and } N_{b\text{-jets}} \ge 1$					
$2\ell SS$	Two same-charge (SS) very tight (T*) leptons, $p_{\rm T} > 20 \text{ GeV}$					
	No $\tau_{\rm had}$ candidates					
	$m(\ell^+\ell^-) > 12$ GeV for all SF pairs					
	13 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}$, mat. conv., int. conv.,					
	split by lepton flavour, charge, jet and b -jet multiplicity					
3ℓ	Three loose (L) leptons with $p_{\rm T} > 10$ GeV; sum of light-lepton charges = ± 1					
	Two SS very tight (T*) leptons, $p_{\rm T} > 15 \text{ GeV}$					
	One OS (w.r.t the SS pair) loose-isolated (L*) lepton, $p_{\rm T} > 10 \text{ GeV}$					
	No $ au_{had}$ candidates					
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOS pairs					
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$					
	7 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}Z$, VV , $t\bar{t}$, mat. conv, int. conv					
4ℓ	Four loose-isolated (L*) leptons; sum of light lepton charges $= 0$					
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOS pairs					
	$m(4\ell) < 115 \text{ GeV or } m(4\ell) > 130 \text{ GeV}$					
	2 categories : Zenr (Z-enriched;1 or 2 SFOS pairs) or Zdep (Z-depleted; 0 SFOS pairs)					
$1\ell 2 au_{\rm had}$	One tight (T) lepton, $p_{\rm T} > 27 \text{ GeV}$					
	Two OS $\tau_{\rm had}$ candidates					
	At least one tight τ_{had} candidate					
	$N_{ m jets} \geq 3$					
$2\ell SS1\tau_{had}$	$2\ell SS$ selection, except: One medium τ_{had} candidate					
	$N_{ m jets} \ge 4$					
$3\ell 1 au_{ m had}$	3ℓ selection, except:					
	One medium $\tau_{\rm had}$ candidate, of opposite charge to the total charge of the light leptons					
	Two SS tight (T) leptons					