Probing the EW sphaleron with GWs

Ligong Bian 边立功 Chongqing University(重庆大学) Igbycl@cqu.edu.cn

based on:RYZ, LGB,HKG, 1910.00234

Baryon asymmetry in the universe

more baryons than antibaryons (BBN & CMB, etc)

$$\frac{n_b}{s} \approx (0.7 - 0.9) \times 10^{-10} \neq 0$$

If the BAU is generated before $T \approx O(1)$ MeV(BBN), the light element abundances (D,³He,⁴He,⁷Li) can be explained by the standard Big-Bang cosmology.

Baryogenesis = generate right nb/s

Tn~ 10^2 GeV

JM NO

Why SFOEWPT

h

(J) 7. (b) T = TV(φ) 0,2 0,4 0,6 0,8 1,2 0 φ \$ >0 Characteristic Strain **♦ >0 ♦ >0** ~

C J Moore et al. Class. Quantum Grav. 32 (2015) 015014.

BNPC, v/T and EW sphaleron

$$\begin{split} \partial_{\mu}J_{B}^{\mu} &= i\frac{N_{F}}{32\pi^{2}}\left(-g_{2}^{2}F^{a\mu\nu}\widetilde{F}_{\mu\nu}^{a} + g_{1}^{2}f^{\mu\nu}\widetilde{f}_{\mu\nu}\right),\\ \Delta B &= N_{F}(\Delta N_{\rm CS} - \Delta n_{\rm CS}),\\ N_{\rm CS} &= -\frac{g_{2}^{2}}{16\pi^{2}}\int d^{3}x\,2\epsilon^{ijk}\,{\rm Tr}\left[\partial_{i}A_{j}A_{k} + i\frac{2}{3}g_{2}A_{i}A_{j}A_{k}\right],\\ n_{\rm CS} &= -\frac{g_{1}^{2}}{16\pi^{2}}\int d^{3}x\,\epsilon^{ijk}\,\partial_{i}B_{j}B_{k},\\ A_{i} \rightarrow UA_{i}U^{-1} + \frac{i}{g_{2}}(\partial_{i}U)U^{-1},\\ \delta N_{\rm CS} &= \frac{1}{24\pi^{2}}\int d^{3}x\,{\rm Tr}\left[(\partial_{i}U)U^{-1}(\partial_{j}U)U^{-1}(\partial_{k}U)U^{-1}\right]\epsilon^{ijk}. \end{split}$$

$$\begin{split} &\frac{d^2f}{d\xi^2} = \frac{2}{\xi^2}f(1-f)(1-2f)s_{\mu}^2 - \frac{1}{8}(2h^2(1-f) - 2h(1-h)(1-2f)c_{\mu}^2 + 2f(1-h)^2c_{\mu}^2), \\ &\frac{d}{d\xi}\left(\xi^2\frac{dh}{d\xi}\right) = 2h(1-f)^2 - 2f(1-f)(1-2h)c_{\mu}^2 - 2f^2(1-h)c_{\mu}^2 + \frac{\xi^2}{g_2^2}\frac{1}{v[T]^4}\frac{\partial V_{\text{eff}}}{\partial h}, \end{split}$$

$$\Gamma_{\rm sph} = A_{\rm sph}(T) \exp[-E_{\rm sph}(T)/T] < {\rm H}({\rm T})$$

$$PT_{sph} \equiv \frac{E_{sph}(T)}{T} - 7\ln\frac{v(T)}{T} + \ln\frac{T}{100 \text{ GeV}} \qquad PT_{sph} > (35.9 - 42.8)$$
$$E_{sph}(T) \approx E_{sph,0}\frac{v(T)}{v} \qquad \qquad \frac{v(T)}{T} > (0.973 - 1.16)\left(\frac{E_{sph,0}}{1.916 \times 4\pi v/g}\right)^{-1}$$

$$GWS and EWPT$$

$$\frac{\beta}{1} = T_* \frac{d}{dT} \left(\frac{S_3}{T} \right) \Big|_{T_*} \stackrel{\beta \text{ reflect the duration of the phase transition}}{\beta \text{ reflect the duration of the phase transition}}$$

$$\Omega_{col} h^2 = 1.67 \times 10^{-5} \left(\frac{H_*}{\beta} \right)^2 \left(\frac{\kappa \alpha}{1 + \alpha} \right)^2 \left(\frac{100}{g_*} \right)^{1/3} \left(\frac{0.11v_b^3}{0.42 + v_b^2} \right) \frac{3.8(f/f_{env})^{2.8}}{1 + 2.8(f/f_{env})^{3.8}}$$
envelop approximation
$$f_{env} = 16.5 \times 10^{-6} \left(\frac{f_*}{H_*} \right) \left(\frac{T_*}{100 \text{ GeV}} \right) \left(\frac{g_*}{100} \right)^{1/6} \text{ Hz}$$

$$\Omega_{sw} h^2 = 2.65 \times 10^{-6} \left(\frac{H_*}{\beta} \right) \left(\frac{\kappa_v \alpha}{1 + \alpha} \right)^2 \left(\frac{100}{g_*} \right)^{1/3} v_b \left(\frac{f}{f_{sw}} \right)^3 \left(\frac{7}{4 + 3(f/f_{sw})^2} \right)^{7/2} (5.6)$$

$$\Omega_{turb} h^2 = 3.35 \times 10^{-4} \left(\frac{H_*}{\beta} \right) \left(\frac{\kappa_{turb} \alpha}{1 + \alpha} \right)^{3/2} \left(\frac{100}{g_*} \right)^{1/3} v_b \left(\frac{f}{H_*} \right) \left(\frac{T_*}{100 \text{ GeV}} \right) \left(\frac{g_*}{100} \right)^{1/6} \text{ Hz},$$
kv, kturb: the fraction of latent heat transformed into the bulk motion of the fluid for sound waves and MHD
$$f_{turb} = 2.7 \times 10^{-5} \frac{1}{v_b} \left(\frac{\beta}{H_*} \right) \left(\frac{T_*}{100 \text{ GeV}} \right) \left(\frac{g_*}{100} \right)^{1/6} \text{ Hz}$$

GW sources

$$\Omega_{\rm GW}(f) = \begin{cases} \Omega_{\rm GW*} \left(\frac{f}{f_*}\right)^{n_{\rm GW1}} & \text{for } f < f_*, \\ \\ \Omega_{\rm GW*} \left(\frac{f}{f_*}\right)^{n_{\rm GW2}} & \text{for } f > f_*, \end{cases}$$

Table 1. Cosmological GW sources

1807.00786

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	source	$n_{\rm GW1}$	$n_{\rm GW2}$	<i>f</i> . [Hz]	$\Omega_{\rm GW}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Phase transition (bubble collision)	2.8	$^{-2}$	$\sim 10^{-5} \left(\frac{f_{\rm PT}}{\beta} \right) \left(\frac{\beta}{H_{\rm PT}} \right) \left(\frac{T_{\rm PT}}{100 \text{ GeV}} \right)$	$\sim 10^{-5} \left(\frac{H_{\rm PT}}{\beta}\right)^2 \left(\frac{\kappa_{\phi}\alpha}{1+\alpha}\right)^2 \left(\frac{0.11v_w^3}{0.42+v_w^2}\right)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Phase transition (turbulence)	3	-5/3	$\sim 3\times 10^{-5} \left(\frac{1}{v_w}\right) \left(\frac{\beta}{H_{\rm PT}}\right) \left(\frac{T_{\rm PT}}{100~{\rm GeV}}\right)$	$\sim 3 \times 10^{-4} \left(\frac{H_{\rm PT}}{\beta}\right) \left(\frac{\kappa_{\rm turb}\alpha}{1+\alpha}\right)^{3/2} v_w$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Phase transition (sound waves)	3	-4	$\sim 2 \times 10^{-5} \left(\frac{1}{v_w}\right) \left(\frac{\beta}{H_{\rm PT}}\right) \left(\frac{T_{\rm PT}}{100 { m ~GeV}}\right)$	$\sim 3 \times 10^{-6} \left(\frac{H_{\text{PT}}}{\beta}\right) \left(\frac{\kappa_v \alpha}{1+\alpha}\right)^2 v_w$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Preheating $(\lambda \phi^4)$	3	cutoff	$\sim 10^7$	$\sim 10^{-11} \left(\frac{g^2 / \lambda}{100} \right)^{-0.3}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Preheating (hybrid)	2	cutoff	$\sim rac{g}{\sqrt{\lambda}} \lambda^{1/4} 10^{10.25}$	$\sim 10^{-5} \left(rac{\lambda}{g^2} ight)^{1.16} \left(rac{v}{M_{ m pl}} ight)^2$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cosmic strings (loops 1)	[1, 2]	[-1, -0.1]	$\sim 3 imes 10^{-8} \left(rac{G \mu}{10^{-11}} ight)^{-1}$	$\sim 10^{-9} \left(\frac{G\mu}{10^{-12}} \right) \left(\frac{\alpha_{\text{loop}}}{10^{-1}} \right)^{-1/2} \text{ (for } \alpha_{\text{loop}} \gg \Gamma G \mu \text{)}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cosmic strings (loops 2)	[-1, -0.1]	0	$\sim 3 imes 10^{-8} \left(\frac{G \mu}{10^{-11}} \right)^{-1}$	$\sim 10^{-9.5} \left(\frac{G\mu}{10^{-12}} \right) \left(\frac{\alpha_{\text{loop}}}{10^{-1}} \right)^{-1/2} (\text{for } \alpha_{\text{loop}} \gg \Gamma G\mu)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cosmic strings (infinite strings)	[0, 0.2]	[0, 0.2]		$\sim 10^{-[11,13]} \left(rac{G\mu}{10^{-8}} ight)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Domain walls	3	-1	$\sim 10^{-9} \left(\frac{T_{\mathrm{ann}}}{10^{-2} \mathrm{GeV}} \right)$	$\sim 10^{-17} \left(\frac{\sigma}{1 { m TeV}^3} \right)^2 \left(\frac{T_{\rm ann}}{10^{-2} { m GeV}} \right)^{-4}$
$ \begin{array}{c ccccc} \text{Self-ordering scalar + reheating} & 0 & -2 & \sim 0.4 \left(\frac{T_R}{10^7 \text{ GeV}} \right) & \sim \frac{511}{N} \Omega_{\text{rad}} \left(\frac{v}{M_{\text{pl}}} \right)^4 \\ \text{Magnetic fields} & 3 & \alpha_B + 1 & \sim 10^{-6} \left(\frac{T_*}{10^2 \text{ GeV}} \right) & \sim 10^{-16} \left(\frac{B}{10^{-10} \text{G}} \right) \\ \text{Inflation+reheating} & \sim 0 & -2 & \sim 0.3 \left(\frac{T_R}{10^7 \text{ GeV}} \right) & \sim 2 \times 10^{-17} \left(\frac{r}{0.01} \right) \\ \text{Inflation+kination} & \sim 0 & 1 & \sim 0.3 \left(\frac{T_R}{10^7 \text{ GeV}} \right) & \sim 2 \times 10^{-17} \left(\frac{r}{0.01} \right) \\ \text{Particle prod. during inf.} & -2\epsilon & -4\epsilon(4\pi\xi - 6)(\epsilon - \eta) & - & \sim 2 \times 10^{-17} \left(\frac{r}{0.01} \right) \\ \text{2nd-order (inflation)} & 1 & \text{drop-off} & \sim 7 \times 10^5 \left(\frac{T_{\text{reh}}}{10^9 \text{ GeV}} \right)^{1/3} \left(\frac{M_{\text{inf}}}{10^9 \text{ GeV}} \right)^{2/3} & \sim 10^{-12} \left(\frac{T_{\text{reh}}}{10^9 \text{ GeV}} \right)^{-4/3} \left(\frac{M_{\text{inf}}}{10^{16} \text{ GeV}} \right)^{4/3} \\ \text{Pre-Big-Bang} & 3 & 3 - 2\mu & - & \sim 1.4 \times 10^{-6} \left(\frac{H_s}{0.15M_{\text{pl}}} \right)^4 \end{array}$	Self-ordering scalar fields	0	0	_	$\sim \frac{511}{N} \Omega_{\rm rad} \left(\frac{v}{M_{\rm pl}} \right)^4$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Self-ordering scalar $+$ reheating	0	$^{-2}$	$\sim 0.4 \left(\frac{T_R}{10^7 \text{ GeV}} \right)$	$\sim \frac{511}{N} \Omega_{\rm rad} \left(\frac{v}{M_{\rm pl}} \right)^4$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Magnetic fields	3	$\alpha_B + 1$	$\sim 10^{-6} \left(\frac{T_*}{10^2 \text{GeV}} \right)$	$\sim 10^{-16} \left(rac{B}{10^{-10} m G} ight)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Inflation+reheating	~ 0	$^{-2}$	$\sim 0.3 \left(\frac{T_R}{10^7 \text{ GeV}} \right)$	$\sim 2 \times 10^{-17} \left(\frac{r}{0.01} \right)$
Particle prod. during inf. -2ϵ $-4\epsilon(4\pi\xi-6)(\epsilon-\eta)$ $ \sim 2 \times 10^{-17} \left(\frac{r}{0.01}\right)$ 2nd-order (inflation) 1 drop-off $\sim 7 \times 10^5 \left(\frac{T_{reh}}{10^9 \text{ GeV}}\right)^{1/3} \left(\frac{M_{inf}}{10^{16} \text{ GeV}}\right)^{2/3}$ $\sim 10^{-12} \left(\frac{T_{reh}}{10^9 \text{ GeV}}\right)^{-4/3} \left(\frac{M_{inf}}{10^{16} \text{ GeV}}\right)^{4/3}$ 2nd-order (PBHs) 2 drop-off $\sim 4 \times 10^{-2} \left(\frac{M_{PBH}}{10^{20} \text{ g}}\right)^{-1/2}$ $\sim 7 \times 10^{-9} \left(\frac{A^2}{10^{-3}}\right)^2$ Pre-Big-Bang 3 $3 - 2\mu$ $ \sim 1.4 \times 10^{-6} \left(\frac{H_s}{0.15M_{pl}}\right)^4$	Inflation+kination	~ 0	1	$\sim 0.3 \left(rac{T_R}{10^7 \ { m GeV}} ight)$	$\sim 2 \times 10^{-17} \left(\frac{r}{0.01} \right)$
$ \begin{array}{c cccc} 2 \mathrm{nd}\text{-order (inflation)} & 1 & \mathrm{drop\text{-off}} & \sim 7 \times 10^5 \left(\frac{T_{\mathrm{reh}}}{10^9 \ \mathrm{GeV}}\right)^{1/3} \left(\frac{M_{\mathrm{inf}}}{10^{16} \ \mathrm{GeV}}\right)^{2/3} & \sim 10^{-12} \left(\frac{T_{\mathrm{reh}}}{10^9 \ \mathrm{GeV}}\right)^{-4/3} \left(\frac{M_{\mathrm{inf}}}{10^{16} \ \mathrm{GeV}}\right)^{4/3} \\ \hline 2 \mathrm{nd}\text{-order (PBHs)} & 2 & \mathrm{drop\text{-off}} & \sim 4 \times 10^{-2} \left(\frac{M_{\mathrm{PBH}}}{10^{20} \ \mathrm{g}}\right)^{-1/2} & \sim 7 \times 10^{-9} \left(\frac{\mathcal{A}^2}{10^{-3}}\right)^2 \\ \hline \mathrm{Pre\text{-Big-Bang}} & 3 & 3 - 2\mu & - & \sim 1.4 \times 10^{-6} \left(\frac{H_s}{0.15M_{\mathrm{pl}}}\right)^4 \end{array} $	Particle prod. during inf.	-2ϵ	$-4\epsilon(4\pi\xi-6)(\epsilon-\eta)$	—	$\sim 2 \times 10^{-17} \left(\frac{r}{0.01} \right)$
$ \begin{array}{c cccc} 2 \mathrm{nd} \cdot \mathrm{order} \ (\mathrm{PBHs}) & 2 & \mathrm{drop} \cdot \mathrm{off} & \sim 4 \times 10^{-2} \left(\frac{M_{\mathrm{PBH}}}{10^{20} \ \mathrm{g}}\right)^{-1/2} & \sim 7 \times 10^{-9} \left(\frac{\mathcal{A}^2}{10^{-3}}\right)^2 \\ \hline & & & & & \\ \end{array} $ Pre-Big-Bang $3 & 3 - 2\mu & - & & & \\ \end{array} $ $ \begin{array}{c} \sim 1.4 \times 10^{-6} \left(\frac{H_s}{0.15M_{\mathrm{pl}}}\right)^4 \end{array} $	2nd-order (inflation)	1	drop-off	$\sim 7 \times 10^5 \left(\frac{T_{\rm reh}}{10^9 \text{ GeV}} \right)^{1/3} \left(\frac{M_{\rm inf}}{10^{16} \text{ GeV}} \right)^{2/3}$	$\sim 10^{-12} \left(\frac{T_{\rm reh}}{10^9 {\rm ~GeV}} \right)^{-4/3} \left(\frac{M_{\rm inf}}{10^{16} {\rm ~GeV}} \right)^{4/3}$
Pre-Big-Bang 3 $3 - 2\mu$ — $\sim 1.4 \times 10^{-6} \left(\frac{H_s}{0.15M_{\rm pl}}\right)^4$	2nd-order (PBHs)	2	drop-off	$\sim 4 imes 10^{-2} \left(rac{M_{ m PBH}}{10^{20} \ m g} ight)^{-1/2}$	$\sim 7 imes 10^{-9} \left(rac{\mathcal{A}^2}{10^{-3}} ight)^2$
	Pre-Big-Bang	3	$3-2\mu$		$\sim 1.4 \times 10^{-6} \left(\frac{H_s}{0.15 M_{\rm pl}} \right)^4$

SM+Scalar Singlet

SM+Scalar Doublet

SM + Scalar Triplet

NMSSM

Composite Higgs

EFT Approach (h⁶ and ??)

Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel- Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17, Cheng, Bian 17, Bian, Tang 18,...

Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Bian, Liu 18,...

Profumo, Ramsey-Musolf 12, Chiang 14, Zhou, Cheng, Deng, Bian, Wu 18,...

BSM for EWPT

Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15, Bi, Bian, Huang, Shu, Yin 15, Bian, Guo, Shu 17,...

Espinosa, Gripaios, Konstandin, Riva 11, Bruggisser, Von Harling, Matsedonskyi, Servant 18, Bian, Wu, Xie 19, De Curtis, Delle Rose, Panico 19

Grojean, Servant, Wells 05, Bodeker, Froome, Huber, Seniuch 05, Huang, Joglekar, Li, Wagner 15, Cai, Sasaki , Wang17, Zhou, Bian, Guo 19, ...

Higgs Potential Shape??? EFT or ??? First or second order

Grojean, Servant, Wells 05, P. Huang, Jokelar, Li, Wagner (2015)

F.P. Huang, Gu, Yin, Yu, Zhang (2015) F.P. Huang, Wan, Wang, Cai, Zhang (2016) Cao, F.P. Huang, Xie, & Zhang (2017)

LHC say the quantum fluctuation (quadratic oscillation) around h=v with mh=126 GeV, not sensitive to the specifically potential shape

Model classes for catalyzing a strongly first order electroweak phase transition

Daniel J H. Chung, Andrew J. Long, and Lian-Tao Wang PRD87, 023509 (2013)

Dim. six operator, SMEFT

Higgs potential
$$V(H) = -m^2(H^{\dagger}H) + \lambda (H^{\dagger}H)^2 + \frac{(H^{\dagger}H)^3}{\Lambda^2}$$

Finite temperature potential
$$V_T(h,T) = V(h) + \frac{1}{2}c_{hT}h^2$$

Thermal correction
$$c_{hT}=(4y_t^2+3g_{_{-}}^2+g'^2+8\lambda)T^2/16$$

Electroweak minimum $\Lambda \geq v^2/m_h$ being the global one

Potential barrier requirement $\Lambda < \sqrt{3}v^2/m_h$

EWPT in the SM + Real Singlet: 'xSM' model

For the "xSM" model, the gauge invariant finite temperature effective potential is found to be:

$$V(h,s,T) = -\frac{1}{2} [\mu^2 - \Pi_h(T)] h^2 - \frac{1}{2} [-b_2 - \Pi_s(T)] s^2 + \frac{1}{4} \lambda h^4 + \frac{1}{4} a_1 h^2 s + \frac{1}{4} a_2 h^2 s^2 + \frac{b_3}{3} s^3 + \frac{b_4}{4} s^4,$$
(C1)

with the thermal masses given by

Phase transition strength and the BNPC

FIG. 1: PT_{sph} versus v_n/T_n for SMEFT (left) and xSM (right) by by color-coding $E_{sph}(T_n)v/(E_{sph}v_n)$.

Search for sphaleron with GW

Gravitational waves can be searched for by cross-correlating outputs from two or more detectors, with the resulting signal-to- noise ratio(SNR)

$$\mathrm{SNR} = \sqrt{\mathcal{T} \int df \left[\frac{h^2 \Omega_{\mathrm{GW}}(f)}{h^2 \Omega_{\mathrm{exp}}(f)}\right]^2}$$

where T is the duration of the data in years and Ω exp the power spectral density of the detector.

Triple and quartic Higgs coupling deviation, GW

$$\begin{split} \Delta \mathcal{L} &= -\frac{1}{2} \frac{m_h^2}{v} (1 + \delta \kappa_3) h^3 - \frac{1}{8} \frac{m_h^2}{v^2} (1 + \delta \kappa_4) h^4 \\ \delta \kappa_3^{h^6} &= \frac{2v^4}{\Lambda^2 m_h^2} , \delta \kappa_4^{h^6} = \frac{12v^4}{\Lambda^2 m_h^2} \\ \delta \kappa_3^{\text{xSM}} &= \alpha^2 \left[-\frac{3}{2} + \frac{2m_H^2 - 2b_3 v_s - 4b_4 v_s^2}{m_h^2} \right] \\ \delta \kappa_4^{\text{xSM}} &= \alpha^2 \left[-3 + \frac{5m_H^2 - 4b_3 v_s - 8b_4 v_s^2}{m_h^2} \right] \end{split}$$

GW

PT strength and Higgs triple and quartic couplings

xSM

SFOEWPT

one-step

SFOEWPT multi-step. general with two fields

Bubble, Sphaleron and BAU

$$\begin{array}{ll} \text{Instanton} & \frac{S_3(T_N)}{T_N} - \frac{3}{2} \ln \left(\frac{S_3(T_N)}{T_N} \right) \\ & \frac{\Gamma}{V} = A(T) e^{-S_3/T} & = 152.59 - 2 \ln g_*(T_N) - 4 \ln \left(\frac{T_N}{100 \text{ GeV}} \right) \\ \text{Bubble nucleation} & S_3 (T_N)/T_N \sim 140 - 150 \\ \end{array}$$

$$\begin{array}{ll} \text{Washout avoid} & \Gamma_{\text{sph}} = A_{\text{sph}}(T) \exp[-E_{\text{sph}}(T)/T] < \text{H}(T) \\ & E_{\text{sph}}(T) \approx E_{\text{sph},0} \frac{v(T)}{v} & \frac{v(T)}{T} > (0.973 - 1.16) \left(\frac{E_{\text{sph},0}}{1.916 \times 4\pi v/g} \right)^{-1} \end{array}$$

$$SM+S \qquad E_{\rm sph}[f,h,k] = \frac{4\pi v}{g_2} \int_0^\infty d\xi \, \left[4 \left(\frac{df}{d\xi} \right)^2 + \frac{8}{\xi^2} (f-f^2)^2 + \frac{\xi^2}{2} \left(\frac{dh}{d\xi} \right)^2 + h^2 (1-f)^2 + \frac{\xi^2}{2} \frac{v_s^2}{v^2} \left(\frac{dk}{d\xi} \right)^2 + \frac{\xi^2}{g_2^2 v^4} V_{\rm eff}(h,k,T) \right],$$

$$V_{1\ell} = V_{\text{tree}} + \Delta V_{1\ell}$$

$$\begin{aligned} \Delta V_{1\ell} &= \Delta V_{1\ell,T=0} + V_{1\ell,T\neq0} ,\\ \Delta V_{1\ell,T=0} &= \sum_{i=h,\chi,W,Z,t} \frac{n_i m_i^2(h_c)}{64\pi^2} \left(\log \frac{m_i^4(h_c)}{v^2} - C_i \right) ,\\ V_{1\ell,T\neq0} &= \frac{n_t T^4}{2\pi^2} J_f \left(m_t^2(h_c)/T^2 \right) + \sum_{i=h,\chi,W,Z} \frac{n_i T^4}{2\pi^2} J_b \left(m_i^2(h_c)/T^2 \right) \end{aligned}$$

the high-temperature expansion of Jb and Jf leading terms,

$$J_b(x) \rightarrow \pi^2 x/12$$
 and $J_f(x) \rightarrow -\pi^2 x/24$

GM model

The most general scalar potential $V(\Phi, \Delta)$ invariant under $SU(2)_L \times SU(2)_R \times U(1)_Y$ is given by

$$\Phi \equiv (\epsilon_2 \phi^*, \phi) = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{pmatrix}, \quad \Delta \equiv (\epsilon_3 \chi^*, \xi, \chi) = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}, \quad (1)$$

with

$$\varepsilon_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \varepsilon_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad (2)$$

where the phase convention for the scalar field components is: $\chi^{--} = \chi^{++*}$, $\chi^{-} = \chi^{+*}$, $\xi^{-} = \xi^{+*}$, $\phi^{-} = \phi^{+*}$. Φ and Δ are transformed under $SU(2)_L \times SU(2)_R$ as $\Phi \to U_{2,L} \Phi U_{2,R}^{\dagger}$ and $\Delta \to U_{3,L} \Delta U_{3,R}^{\dagger}$ with $U_{L,R} = exp(i\theta_{L,R}^a T^a)$ and T^a being the SU(2) generators.

where summations over a, b = 1, 2, 3 are understood, σ 's and T's are the 2 × 2 (Pauli matrices) and 3 × 3 matrix representations of the SU(2) generators, respectively

$$T_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, T_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, T_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$
(4)

The P matrix, which is the similarity transformation relating the generators in the triplet and the adjoint representations, is given by

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & i & 0 \\ 0 & 0 & \sqrt{2} \\ 1 & i & 0 \end{pmatrix}.$$
 (5)

The finite-T potential

$$V_T = V_0 + \frac{1}{2}c_{\phi}T^2h_{\phi}^2 + \frac{1}{2}c_{\xi}T^2h_{\xi}^2 + \frac{1}{2}c_{\chi}T^2h_{\chi}^2$$

$$V_{0} = \frac{1}{4} (4h_{\phi}^{4}\lambda_{1} + 2(h_{\xi}^{2} + h_{\chi}^{2})(m_{2}^{2} + 2\lambda_{2}(h_{\xi}^{2} + h_{\chi}^{2})) + 2\lambda_{3}(2h_{\xi}^{4} + h_{\chi}^{4}) + h_{\phi}^{2}(2m_{1}^{2} + 4\lambda_{4}h_{\xi}^{2} + h_{\xi}(2\sqrt{2}\lambda_{5}h_{\chi} + \mu_{1}) + h_{\chi}(4\lambda_{4}h_{\chi} + \lambda_{5}h_{\chi} + \sqrt{2}\mu_{1})) + 12\mu_{2}h_{\xi}h_{\chi}^{2})$$

