Probing the EW sphaleron with GWs

Ligong Bian 边立功
Chongqing University（重庆大学）
Igbycl＠cqu．edu．cn

Baryon asymmetry in the universe

more baryons than antibaryons (BBN \& CMB, etc)

$$
\frac{n_{b}}{s} \approx(0.7-0.9) \times 10^{-10} \neq 0
$$

If the BAU is generated before
$\mathrm{T} \simeq 0$ (1) $\mathrm{MeV}(\mathrm{BBN})$, the light element abundances ($D,{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$) can be explained by the standard Big-Bang cosmology.

STRING THEORY

> 3 spatial dimensions

- Curled up? Size scale?
- Deviations from Newton's law

ELECTROWEAK BARYOGENSIS

- Baryon number violation (sphaleron)
- CP violation (e.g. EDM neutron)
- Thermal non-equilitrium

NN

Big Bang

Tn~ 10^2 GeV

Why SFOEWPT

h

C J Moore et al. Class. Quantum Grav. 32 (2015) 015014.

BNPC, v/T and EW sphaleron

$$
\begin{gathered}
\partial_{\mu} J_{B}^{\mu}=i \frac{N_{F}}{32 \pi^{2}}\left(-g_{2}^{2} F^{a \mu \nu} \tilde{F}_{\mu \nu}^{a}+g_{1}^{2} f^{\mu \nu} \tilde{f}_{\mu \nu}\right), \\
\Delta B=N_{F}\left(\Delta N_{\mathrm{CS}}-\Delta n_{\mathrm{CS}}\right),
\end{gathered}
$$

$$
\begin{aligned}
N_{\mathrm{CS}}= & -\frac{g_{2}^{2}}{16 \pi^{2}} \int d^{3} \times 2 \epsilon^{i j k} \operatorname{Tr}\left[\partial_{i} A_{j} A_{k}+i \frac{2}{3} g_{2} A_{i} A_{j} A_{k}\right] \\
n_{\mathrm{CS}}= & -\frac{g_{1}^{2}}{16 \pi^{2}} \int d^{3} \times \epsilon^{i j k} \partial_{i} B_{j} B_{k}, \\
& A_{i} \rightarrow U A_{i} U^{-1}+\frac{i}{g_{2}}\left(\partial_{i} U\right) U^{-1},
\end{aligned}
$$

$$
\delta N_{\mathrm{CS}}=\frac{1}{24 \pi^{2}} \int d^{3} \times \operatorname{Tr}\left[\left(\partial_{i} U\right) U^{-1}\left(\partial_{j} U\right) U^{-1}\left(\partial_{k} U\right) U^{-1}\right] \epsilon^{i j k}
$$

$$
\begin{aligned}
& E_{\text {sph }, T}=\frac{4 \pi v[T]}{g} \int_{0}^{\infty} d \xi\left[4\left(\frac{d f}{d \xi}\right)^{2} s_{\mu}^{2}+\frac{8}{\xi^{2}} 2^{2}(1-f)^{2} s_{\mu}^{4}+\frac{\xi^{2}}{2}\left(\frac{d h}{d \xi}\right)^{2} s_{\mu}^{2}+s_{\mu}^{2}\left((1-f)^{2} h^{2}\right.\right. \\
& \left.\left.-2 f h(1-f)(1-h) c_{\mu}^{2}+f^{2}(1-h)^{2} c_{\mu}^{2}\right)+\frac{\xi^{2}}{g^{2} v[T]^{4}}\left(V_{e f f}[\mu, h, T]\right)\right] \quad \quad \Gamma_{\mathrm{sph}}=A_{\mathrm{sph}}(T) \exp \left[-E_{\mathrm{sph}}(T) / T\right]<\mathrm{H}(\mathrm{~T}) \\
& \frac{d^{f} f}{d \xi^{2}}=\frac{2}{\varepsilon^{2}} f(1-f)(1-2 f) s_{\mu}^{2}-\frac{1}{8}\left(2 h^{2}(1-f)-2 h(1-h)(1-2 f) \epsilon_{\mu}^{2}+2 f(1-h)^{2} c^{2}\right), \\
& \frac{d}{d \xi}\left(\xi^{2} \frac{d h}{d \xi}\right)=2 h(1-f)^{2}-2 f(1-f)(1-2 h)_{\mu}^{2}-2 f^{2}(1-h) c_{\mu}^{2} \frac{\xi^{2}}{g_{2}^{2}} \frac{1}{v[T]^{4}} \frac{\partial V_{\text {ce }}}{\partial h}, \\
& P T_{s p h} \equiv \frac{E_{\mathrm{sph}}(T)}{T}-7 \ln \frac{v(T)}{T}+\ln \frac{T}{100 \mathrm{GeV}} \quad P T_{s p h}>(35.9-42.8) \\
& E_{\text {sph }}(T) \approx E_{\text {sph }, 0} \frac{v(T)}{v} \quad \frac{v(T)}{T}>(0.973-1.16)\left(\frac{E_{\text {sph }, 0}}{1.916 \times 4 \pi v / g}\right)^{-1}
\end{aligned}
$$

GWs and EWPT

$$
\frac{\beta}{H_{*}}=\left.T_{*} \frac{d}{d T}\left(\frac{S_{3}}{T}\right)\right|_{T \text {. phase transition }} \begin{gathered}
\beta \text { reflect the } \\
\text { duration of the }
\end{gathered}
$$

$\Omega_{\mathrm{col}} h^{2}=1.67 \times 10^{-5}\left(\frac{H_{*}}{\beta}\right)^{2}\left(\frac{\kappa \alpha}{1+\alpha}\right)^{2}\left(\frac{100}{g_{*}}\right)^{1 / 3}\left(\frac{0.11 v_{b}^{3}}{0.42+v_{b}^{2}}\right) \frac{3.8\left(f / f_{\text {env }}\right)^{2.8}}{1+2.8\left(f / f_{\text {env }}\right)^{3.8}}$
envelop approximation

$$
v_{b} \simeq \frac{1 / \sqrt{3}+\sqrt{\alpha^{2}+2 \alpha / 3}}{1+\alpha}, \quad \kappa \simeq \frac{0.715 \alpha+\frac{4}{27} \sqrt{3 \alpha / 2}}{1+0.715 \alpha}
$$

$$
f_{\mathrm{env}}=16.5 \times 10^{-6}\left(\frac{f_{*}}{H_{*}}\right)\left(\frac{T_{*}}{100 \mathrm{GeV}}\right)\left(\frac{g_{*}}{100}\right)^{1 / 6} \mathrm{~Hz}
$$

$$
\begin{equation*}
\Omega_{\mathrm{sw}} h^{2}=2.65 \times 10^{-6}\left(\frac{H_{*}}{\beta}\right)\left(\frac{\kappa_{v} \alpha}{1+\alpha}\right)^{2}\left(\frac{100}{g_{*}}\right)^{1 / 3} v_{b}\left(\frac{f}{f_{\mathrm{sw}}}\right)^{3}\left(\frac{7}{4+3\left(f / f_{\mathrm{sw}}\right)^{2}}\right)^{7 / 2} \tag{5.6}
\end{equation*}
$$

$$
\left.\Omega_{\text {turb }} h^{2}=3.35 \times 10^{-4}\left(\frac{H_{*}}{\beta}\right)\left(\frac{\kappa_{\mathrm{turb}} \alpha}{1+\alpha}\right)^{3 / 2}\left(\frac{100}{g_{*}}\right)^{1 / 3} v_{b} \frac{\left(f / f_{\mathrm{turb}}\right)^{3}}{\left[1+\left(f / f_{\mathrm{turb}}\right)\right]^{11 / 3}\left(1+8 \pi f / h_{*}\right)} 7\right)
$$

$$
\begin{aligned}
& \kappa_{v} \approx \alpha(0.73+0.083 \sqrt{\alpha}+\alpha)^{-1} \text { and } \kappa_{\mathrm{turb}} \approx 0.1 \kappa_{v} f_{\mathrm{sw}}=1.9 \times 10^{-5} \frac{1}{v_{b}}\left(\frac{\beta}{H_{*}}\right)\left(\frac{T_{*}}{100 \mathrm{GeV}}\right)\left(\frac{g_{*}}{100}\right)^{1 / 6} \mathrm{~Hz} \\
& \mathrm{kv}, \text { kturb: the fraction of latent heat }
\end{aligned}
$$ transformed into the bulk motion of the fluid for sound waves and MHD

$$
f_{\text {turb }}=2.7 \times 10^{-5} \frac{1}{v_{b}}\left(\frac{\beta}{H_{*}}\right)\left(\frac{T_{*}}{100 \mathrm{GeV}}\right)\left(\frac{g_{*}}{100}\right)^{1 / 6} \mathrm{~Hz}
$$

$\Omega_{\mathrm{GW}}(f)=\left\{\begin{array}{l}\Omega_{\mathrm{GW} *}\left(\frac{f}{f_{*}}\right)^{n_{\mathrm{GW} 1}} \\ \Omega_{\mathrm{GW} *}\left(\frac{f}{f_{*}}\right)^{n_{\mathrm{GW} 2}}\end{array}\right.$
for $f<f_{*}$,
GW sources
for $f>f_{*}$,

Table 1. Cosmological GW sources
1807.00786

source	$n_{\text {GWI }}$	$n_{\text {GW } 2}$	f. $[\mathrm{Hz}]$	$\Omega_{\text {GW }}$
Phase transition (bubble collision)	2.8	-2	$\sim 10^{-5}\left(\frac{f_{\mathrm{PT}}}{\beta}\right)\left(\frac{\beta}{H_{\mathrm{P} \mathrm{PT}}}\right)\left(\frac{T_{\mathrm{PT}}}{100 \mathrm{GeV}}\right)$	$\sim 10^{-5}\left(\frac{H_{\mathrm{PT}}}{\beta}\right)^{2}\left(\frac{\kappa_{\phi} \alpha}{1+\alpha}\right)^{2}\left(\frac{0.11 v_{w}^{3}}{0.42+v_{w}^{2}}\right)$
Phase transition (turbulence)	3	-5/3	$\sim 3 \times 10^{-5}\left(\frac{1}{v_{w}}\right)\left(\frac{\beta}{H_{\mathrm{PT}}}\right)\left(\frac{T_{\mathrm{PT}}}{100 \mathrm{GeV}}\right)$	$\sim 3 \times 10^{-4}\left(\frac{H_{\mathrm{PT}}}{\beta}\right)\left(\frac{\kappa_{\text {turb }} \alpha}{1+\alpha}\right)^{3 / 2} v_{w}$
Phase transition (sound waves)	3	-4	$\sim 2 \times 10^{-5}\left(\frac{1}{v_{w}}\right)\left(\frac{\beta}{H_{\mathrm{PT}}}\right)\left(\frac{T_{\mathrm{PT}}}{100 \mathrm{GeV}}\right)$	$\sim 3 \times 10^{-6}\left(\frac{H_{\mathrm{PT}}}{\beta}\right)\left(\frac{\kappa_{v} \alpha}{1+\alpha}\right)^{2} v_{w}$
Preheating ($\lambda \phi^{4}$)	3	cutoff	$\sim 10^{7}$	$\sim 10^{-11}\left(\frac{g^{2} / \lambda}{100}\right)^{-0.5}$
Preheating (hybrid)	2	cutoff	$\sim \frac{g}{\sqrt{\lambda}} \lambda^{1 / 4} 10^{10.25}$	$\sim 10^{-5}\left(\frac{\lambda}{g^{2}}\right)^{1.16}\left(\frac{v}{M_{\mathrm{pl}}}\right)^{2}$
Cosmic strings (loops 1)	[1,2]	$[-1,-0.1]$	$\sim 3 \times 10^{-8}\left(\frac{G \mu}{10^{-11}}\right)^{-1}$	$\sim 10^{-9}\left(\frac{G \mu}{10^{-12}}\right)\left(\frac{\alpha_{\text {loop }}}{10^{-1}}\right)^{-1 / 2}\left(\right.$ for $\left.\alpha_{\text {bop }} \geqslant \mathrm{F} G \mu\right)$
Cosmic strings (loops 2)	$[-1,-0.1]$	0	$\sim 3 \times 10^{-8}\left(\frac{G \mu}{10^{-11}}\right)^{-1}$	$\sim 10^{-9.5}\left(\frac{G \mu}{10^{-12}}\right)\left(\frac{\alpha_{\text {loop }}}{10^{-1}}\right)^{-1 / 2}$ (for $\left.\alpha_{\text {bop }} \gg \mathrm{FG} \mu\right)$
Cosmic strings (infinite strings)	[0, 0.2]	[0,0.2]		$\sim 10^{-[11,13]}\left(\frac{G \mu}{10^{-8}}\right)$
Domain walls	3	-1	$\sim 10^{-9}\left(\frac{T_{\text {ann }}}{10^{-2} \mathrm{GeV}}\right)$	$\sim 10^{-17}\left(\frac{\sigma}{1 \mathrm{TeV}^{3}}\right)^{2}\left(\frac{T_{\mathrm{ann}}}{10^{-2} \mathrm{GeV}}\right)^{-4}$
Self-ordering scalar fields	0	0	$-$	$\sim \frac{511}{N} \Omega_{\text {rad }}\left(\frac{v}{M_{\mathrm{pl}}}\right)^{4}$
Self-ordering scalar + reheating	0	-2	$\sim 0.4\left(\frac{T_{R}}{10^{7} \mathrm{GeV}}\right)$	$\sim \frac{511}{N} \Omega_{\text {rad }}\left(\frac{v}{M_{\text {pl }}}\right)^{4}$
Magnetic fields	3	$\alpha_{B}+1$	$\sim 10^{-6}\left(\frac{T}{10^{2} \mathrm{GeV}}\right)$	$\sim 10^{-16}\left(\frac{B}{10^{-10} \mathrm{G}}\right)$
Inflation+reheating	~ 0	-2	$\sim 0.3\left(\frac{T_{R}}{10^{7} \mathrm{GeV}}\right)$	$\sim 2 \times 10^{-17}\left(\frac{r}{0.01}\right)$
Inflation+kination	~ 0	1	$\sim 0.3\left(\frac{T_{R}}{10^{7} \mathrm{GeV}}\right)$	$\sim 2 \times 10^{-17}\left(\frac{r}{0.01}\right)$
Particle prod. during inf.	-2ϵ	$-4 \epsilon(4 \pi \xi-6)(\epsilon-\eta)$	-	$\sim 2 \times 10^{-17}\left(\frac{r}{0.01}\right)$
2nd-order (inflation)	1	drop-off	$\sim 7 \times 10^{5}\left(\frac{T_{\text {reh }}}{10^{9} \mathrm{GeV}}\right)^{1 / 3}\left(\frac{M_{\text {inf }}}{10^{16} \mathrm{GeV}}\right)^{2 / 3}$	$\sim 10^{-12}\left(\frac{T_{\text {reh }}}{10^{9} \mathrm{GeV}}\right)^{-4 / 3}\left(\frac{M_{\text {inf }}}{10^{16} \mathrm{GeV}}\right)^{4 / 3}$
2nd-order (PBHs)	2	drop-off	$\sim 4 \times 10^{-2}\left(\frac{M_{\text {PBH }}}{10^{20} \mathrm{~g}}\right)^{-1 / 2}$	$\sim 7 \times 10^{-9}\left(\frac{\mathcal{A}^{2}}{10^{-3}}\right)^{2}$
Pre-Big-Bang	3	$3-2 \mu$	-	$\sim 1.4 \times 10^{-6}\left(\frac{H_{s}}{0.15 M_{\mathrm{P}^{\mathrm{d}}}}\right)^{4}$

BSM for EWPT

SM+Scalar Singlet

SM+Scalar Doublet

SM + Scalar Triplet

NMSSM
Composite Higgs
EFT Approach (h^{6}
and ??)

Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel- Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17,Cheng, Bian 17, Bian, Tang 18,...

Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Bian, Liu 18,...

Profumo, Ramsey-Musolf 12, Chiang 14, Zhou, Cheng, Deng, Bian, Wu 18,...

Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15, Bi, Bian, Huang, Shu, Yin 15, Bian, Guo, Shu 17,...

Espinosa, Gripaios, Konstandin, Riva 11, Bruggisser, Von Harling, Matsedonskyi, Servant 18, Bian, Wu, Xie 19, De Curtis, Delle Rose, Panico 19

Grojean, Servant, Wells 05, Bodeker, Froome, Huber, Seniuch 05, Huang, Joglekar, Li, Wagner 15,Cai,Sasaki ,Wang17,Zhou, Bian, Guo 19, ...

Higgs Potential Shape??? EFT or ??? First or second order

Grojean, Servant, Wells ${ }^{\top}$ (Ge), P. Huang, Jokelar, Li, Wagner (2015)
F.P. Huang, Gu, Yin, Yu, Zhang (2015) F.P. Huang, Wan, Wang, Cai, Zhang (2016) Cao, F.P. Huang, Xie, \& Zhang (2017)

LHC say the quantum fluctuation (quadratic oscillation) around $\mathrm{h}=\mathrm{v}$ with $\mathrm{mh}=126 \mathrm{GeV}$, not sensitive to the specifically potential shape

Model classes for catalyzing a strongly first order electroweak phase transition

Dim. six operator, SMEFT

Higgs potential

$$
V(H)=-m^{2}\left(H^{\dagger} H\right)+\lambda\left(H^{\dagger} H\right)^{2}+\frac{\left(H^{\dagger} H\right)^{3}}{\Lambda^{2}}
$$

Finite temperature potential $V_{T}(h, T)=V(h)+\frac{1}{2} c_{h T} h^{2}$
Thermal correction $\quad c_{h T}=\left(4 y_{t}^{2}+3 g^{2}+g^{2}+8 \lambda\right) T^{2} / 16$
Electroweak minimum being the global one

$$
\Lambda \geq v^{2} / m_{h}
$$

Potential barrier requirement $\quad \Lambda<\sqrt{3} v^{2} / m_{h}$

EWPT in the SM + Real Singlet: 'xSM' model

For the "xSM" model, the gauge invariant finite temperature effective potential is found to be:

$$
\begin{gather*}
V(h, s, T)=-\frac{1}{2}\left[\mu^{2}-\Pi_{h}(T)\right] h^{2}-\frac{1}{2}\left[-b_{2}-\Pi_{s}(T)\right] s^{2} \\
+\frac{1}{4} \lambda h^{4}+\frac{1}{4} a_{1} h^{2} s+\frac{1}{4} a_{2} h^{2} s^{2}+\frac{b_{3}}{3} s^{3}+\frac{b_{4}}{4} s^{4} \tag{C1}
\end{gather*}
$$

with the thermal masses given by

$$
\begin{align*}
\Pi_{h}(T) & =\left(\frac{2 m_{W}^{2}+m_{Z}^{2}+2 m_{t}^{2}}{4 v^{2}}+\frac{\lambda}{2}+\frac{a_{2}}{24}\right) T^{2} \\
\Pi_{s}(T) & =\left(\frac{a_{2}}{6}+\frac{b_{4}}{4}\right) T^{2} \tag{C2}
\end{align*}
$$

$$
\begin{aligned}
v^{\mathrm{xSM}} / T & \equiv \frac{v_{h}(T)}{T}=\frac{\sqrt{v_{h}^{2}(T)+v_{s}^{2}(T)} \cos \theta(T)}{T} \\
\cos \theta(T) & \equiv \frac{v_{h}(T)}{\sqrt{v_{h}^{2}(T)+v_{s}^{2}(T)}}
\end{aligned}
$$

For small mixing limit between the extra Higgs and the SM Higgs, one have

$$
\begin{aligned}
c_{4}^{\chi S M}= & -\frac{a_{1}^{2}-8 b_{2} \lambda}{32 b_{2}}+\frac{\theta^{2}\left(a_{1}^{2}\left(6 b_{2}-\mu^{2}\right)-8 a_{1} b_{2} b_{3}+8 b_{2}^{2}\left(a_{2}-2 \lambda\right)\right)}{32 b_{2}^{2}}+O\left(\theta^{3}\right) \\
c_{6}^{\chi S M}= & -\frac{a_{1}^{2}\left(a_{1} b_{3}-3 a_{2} b_{2}\right)}{192 b_{2}^{3}}-\frac{\theta^{2} a_{1}}{256 b_{2}^{4}}\left(a_{1}^{3} b_{2}+4 a_{1}^{2} b_{3}\left(\mu^{2}-3 b_{2}\right)\right. \\
& \left.+4 a_{1} b_{2}\left(a 2\left(11 b_{2}-2 \mu^{2}\right)-6 b_{2}(b 4+\lambda)+4 b_{3}^{2}\right)-32 a_{2} b_{2}^{2} b_{3}\right)+O\left(\theta^{3}\right) \\
c_{8}^{\chi S M}= & \frac{a_{1}^{4} b_{4}}{1024 b_{2}^{4}}+\frac{a_{1}^{3} \theta^{2}}{1024 b_{2}^{5}}\left(a_{1}\left(a_{2} b_{2}+4 b_{4}\left(\mu^{2}-3 b_{2}\right)\right)+16 b_{2} b_{3} b_{4}\right)+O\left(\theta^{3}\right)
\end{aligned}
$$

Phase transition strength and the BNPC

FIG. 1: $P T_{s p h}$ versus v_{n} / T_{n} for SMEFT (left) and xSM (right) by by color-coding $E_{s p h}\left(T_{n}\right) v /\left(E_{s p h} v_{n}\right)$.

Search for sphaleron with GW

Gravitational

waves can be searched for by cross-correlating outputs from two or more detectors, with the resulting signal-to- noise ratio(SNR)
$\mathrm{SNR}=\sqrt{\tau \int d f\left[\frac{h^{2} \Omega_{\mathrm{GW}}(f)}{h^{2} \Omega_{\mathrm{exp}}(f)}\right]^{2}}$
where T is the duration of the data in years and
 spectral density of the detector.

Triple and quartic Higgs coupling deviation, GW

$$
\begin{aligned}
\Delta \mathcal{L}= & -\frac{1}{2} \frac{m_{h}^{2}}{v}\left(1+\delta \kappa_{3}\right) h^{3}-\frac{1}{8} \frac{m_{h}^{2}}{v^{2}}\left(1+\delta \kappa_{4}\right) h^{4} \\
\delta \kappa_{3}^{h^{6}}=\frac{2 v^{4}}{\Lambda^{2} m_{h}^{2}}, \delta \kappa_{4}^{h^{6}}=\frac{12 v^{4}}{\Lambda^{2} m_{h}^{2}} & \delta \kappa_{3}^{\mathrm{SM}}=\alpha^{2}\left[-\frac{3}{2}+\frac{2 m_{H}^{2}-2 b_{3} v_{s}-4 b_{4} v_{s}^{2}}{m_{h}^{2}}\right] \\
& \delta \kappa_{4}^{\mathrm{XM}}=\alpha^{2}\left[-3+\frac{5 m_{H}^{2}-4 b_{3} v_{s}-8 b_{4} v_{s}^{2}}{m_{h}^{2}}\right]
\end{aligned}
$$

Future

Nonperturbative evaluation of EWPT and GW

Sphaleron rate simulation and collider search for $B+L$ Violation process

谢谢！

xSM: without extra EWSB GM: with extra EWSB

GW

PT strength and Higgs triple and quartic couplings

hadron collider

xSM

SFOEWPT

one-step

$\mathrm{T}=70(\mathrm{GeV})$

$T_{c}=64.73(\mathrm{GeV})$

$\mathrm{T}=60(\mathrm{GeV})$

SFOEWPT

multi-step. general with two fields

Bubble, Sphaleron and BAU

Instanton

$$
\frac{\Gamma}{V}=A(T) e^{-S_{3} / T}
$$

$$
\begin{aligned}
& \frac{S_{3}\left(T_{N}\right)}{T_{N}}-\frac{3}{2} \ln \left(\frac{S_{3}\left(T_{N}\right)}{T_{N}}\right) \\
& =152.59-2 \ln g_{*}\left(T_{N}\right)-4 \ln \left(\frac{T_{N}}{100 \mathrm{GeV}}\right)
\end{aligned}
$$

Bubble nucleation
S3 (TN)/TN ~140-150

Washout avoid

$$
\Gamma_{\mathrm{sph}}=A_{\mathrm{sph}}(T) \exp \left[-E_{\mathrm{sph}}(T) / T\right]<\mathrm{H}(\mathrm{~T})
$$

$$
E_{\mathrm{sph}}(T) \approx E_{\mathrm{sph}, 0} \frac{v(T)}{v} \quad \frac{v(T)}{T}>(0.973-1.16)\left(\frac{E_{\mathrm{sph}, 0}}{1.916 \times 4 \pi v / g}\right)^{-1} 1708.03061
$$

SM+S

$$
\begin{aligned}
E_{\mathrm{sph}}[f, h, k]=\frac{4 \pi v}{g_{2}} \int_{0}^{\infty} d \xi\left[4\left(\frac{d f}{d \xi}\right)^{2}+\frac{8}{\xi^{2}}\left(f-f^{2}\right)^{2}\right. & +\frac{\xi^{2}}{2}\left(\frac{d h}{d \xi}\right)^{2}+h^{2}(1-f)^{2} \\
& \left.+\frac{\xi^{2}}{2} \frac{v_{S}^{2}}{v^{2}}\left(\frac{d k}{d \xi}\right)^{2}+\frac{\xi^{2}}{g_{2}^{2} v^{4}} V_{\text {eff }}(h, k, T)\right]
\end{aligned}
$$

$V_{1 \ell}=V_{\text {tree }}+\Delta V_{1 \ell}$

$$
\begin{aligned}
\Delta V_{1 \ell} & =\Delta V_{1 \ell, T=0}+V_{1 \ell, T \neq 0}, \\
\Delta V_{1 \ell, T=0} & =\sum_{i=h, \chi, W, Z, t} \frac{n_{i} m_{i}^{2}\left(h_{c}\right)}{64 \pi^{2}}\left(\log \frac{m_{i}^{4}\left(h_{c}\right)}{v^{2}}-C_{i}\right), \\
V_{1 \ell, T \neq 0} & =\frac{n_{t} T^{4}}{2 \pi^{2}} J_{f}\left(m_{t}^{2}\left(h_{c}\right) / T^{2}\right)+\sum_{i=h, \chi, W, Z} \frac{n_{i} T^{4}}{2 \pi^{2}} J_{b}\left(m_{i}^{2}\left(h_{c}\right) / T^{2}\right)
\end{aligned}
$$

the high-temperature expansion of Jb and Jf_{f} leading terms,

$$
\mathrm{Jb}(\mathrm{x}) \rightarrow \pi^{2} \mathrm{x} / 12 \text { and } \mathrm{Jf}(\mathrm{x}) \rightarrow-\pi^{2} \mathrm{x} / 24
$$

GM model

The most general scalar potential $V(\Phi, \Delta)$ invariant under $S U(2)_{L} \times S U(2)_{R} \times U(1)_{Y}$ is given by

$$
\begin{align*}
& V(\Phi, \Delta)=\frac{1}{2} m_{1}^{2} \operatorname{tr}\left[\Phi^{\dagger} \Phi\right]+\frac{1}{2} m_{2}^{2} \operatorname{tr}\left[\Delta^{\dagger} \Delta\right]+\lambda_{1}\left(\operatorname{tr}\left[\Phi^{\dagger} \Phi\right]\right)^{2} \\
& v_{\phi}^{2}+8 v_{\xi}^{2} \equiv v^{2} \approx(246 \mathrm{GeV})^{2} \\
& +\lambda_{2}\left(\operatorname{tr}\left[\Delta^{\dagger} \Delta\right]\right)^{2}+\lambda_{3} \operatorname{tr}\left[\left(\Delta^{\dagger} \Delta\right)^{2}\right]+\lambda_{4} \operatorname{tr}\left[\Phi^{\dagger} \Phi\right] \operatorname{tr}\left[\Delta^{\dagger} \Delta\right] \\
& +\lambda_{5} \operatorname{tr}\left[\Phi^{\dagger} \frac{\sigma^{a}}{2} \Phi \frac{\sigma^{b}}{2}\right] \operatorname{tr}\left[\Delta^{\dagger} T^{a} \Delta T^{b}\right] \\
& v_{\chi}=\sqrt{2} v_{\xi} \\
& +\mu_{1} \operatorname{tr}\left[\Phi^{\dagger} \frac{\sigma^{a}}{2} \Phi \frac{\sigma^{b}}{2}\right]\left(P^{\dagger} \Delta P\right)_{a b}+\mu_{2} \operatorname{tr}\left[\Delta^{\dagger} T^{a} \Delta T^{b}\right]\left(P^{\dagger} \Delta P\right)_{a b}, \tag{3}
\end{align*}
$$

$$
\Phi \equiv\left(\varepsilon_{2} \phi^{*}, \phi\right)=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \tag{1}\\
-\phi^{+*} & \phi^{0}
\end{array}\right), \quad \Delta \equiv\left(\varepsilon_{3} \chi^{*}, \xi, \chi\right)=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right),
$$

$$
\varepsilon_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \varepsilon_{3}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

(2) The P matrix, which is the similarity transformation relating the generators in the triplet and the adjoint representations, is given by

$$
P=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
-1 & i & 0 \tag{5}\\
0 & 0 & \sqrt{2} \\
1 & i & 0
\end{array}\right)
$$

The finite-T potential

$$
\begin{gathered}
V_{T}=V_{0}+\frac{1}{2} c_{\phi} T^{2} h_{\phi}^{2}+\frac{1}{2} c_{\xi} T^{2} h_{\xi}^{2}+\frac{1}{2} c_{\chi} T^{2} h_{\chi}^{2} \\
V_{0}=\frac{1}{4}\left(4 h_{\phi}^{4} \lambda_{1}+2\left(h_{\xi}^{2}+h_{\chi}^{2}\right)\left(m_{2}^{2}+2 \lambda_{2}\left(h_{\xi}^{2}+h_{\chi}^{2}\right)\right)+2 \lambda_{3}\left(2 h_{\xi}^{4}+h_{\chi}^{4}\right)\right. \\
\\
\left.+h_{\phi}^{2}\left(2 m_{1}^{2}+4 \lambda_{4} h_{\xi}^{2}+h_{\xi}\left(2 \sqrt{2} \lambda_{5} h_{\chi}+\mu_{1}\right)+h_{\chi}\left(4 \lambda_{4} h_{\chi}+\lambda_{5} h_{\chi}+\sqrt{2} \mu_{1}\right)\right)+12 \mu_{2} h_{\xi} h_{\chi}^{2}\right) \\
c_{\phi}=\frac{3 g^{2}}{16}+\frac{g^{\prime 2}}{16}+2 \lambda_{1}+\frac{3 \lambda_{4}}{2}+\frac{1}{4} y_{t}^{2} \sec ^{2} \theta_{H} \\
c_{\xi}=\frac{g^{2}}{2}+\frac{11 \lambda_{2}}{3}+\frac{7 \lambda_{3}}{3}+\frac{2 \lambda_{4}}{3}, \\
c_{\chi}=\frac{g^{2}}{2}+\frac{g_{\xi}^{\prime 2}}{4}+\frac{11 \lambda_{2}}{3}+\frac{7 \lambda_{3}}{3}+\frac{2 \lambda_{4}}{3} .
\end{gathered}
$$

$h_{\chi}=\sqrt{2} h_{\xi}$ as required by the custodial symmetry

