Chinese LHC Physics 2019: 26th Oct, 2019

Search for low mass Higgs-boson like resonances with $m_h < 125$ GeV in the diphoton final state with the CMS experiment

Sijing Zhang

Institute of High Energy Physics, Beijing

October 26, 2019

Outline

- Introduction
- Motivations:
 - * Observations
 - * BSM models
- Results:
 - * Result of 8 TeV data
 - * Result of 13 TeV 2016 data
 - * Combined Result
- Conclusions

Introduction

- Will include the results of 8 TeV dataset (19.7 fb^{-1}) and 13 TeV 2016 dataset (35.9 fb^{-1})
- Documentations:
 - CMS-PAS-HIG-17-013 (Physics Letters B 793 (2019) 320)
 - \rightarrow Published in June 2019
 - ◊ CMS-PAS-HIG-14-037 (PAS-Only)

Available on the CERN CDS information server

CMS PAS HIG-14-037

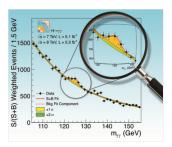
CMS Physics Analysis Summary

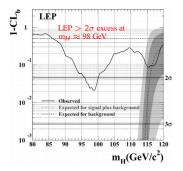
Contact: cms-pag-conveners-higgs@cern.ch

2015/10/30

Search for new resonances in the diphoton final state in the mass range between 80 and 110 GeV in pp collisions at $\sqrt{s} = 8$ TeV

halo Leten 8 755 (2018) 330-547

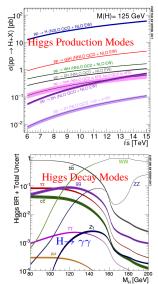

Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at $\sqrt{s} = 8$ and 13 TeV


The CMS Collaboration*

CRIT, Switzeland

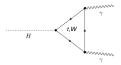
ARTICLE INFO	ABSTRACT
Article Marcey: Received 20 November 2018 Received in revised from 1 Pelewary 2020 Accepted 8 March 2019 Analable million 22 April 2019 Differ: M. Dever	The results of a search for a standard model-like Higgs boson in for mass range horizon X and 1166 of starsping into two phoness are presented. The analysis uses a starsman or millioned with the starspin starsping in the starspin star
Nywodi Clifi Pipolas Higa Diphone	120(10)8 to 31(20)6. The standard combination of the mesh from the stanging of the how data ones in the memory normal supel hows the data (104/c) sind at a upper late in the product after the product standard model the frequency structure and howelves flucture, constrained to the far at a standard model the frequency structure and the structure structure of the structure structure and the structure structure of the structure stru

• Is the observed 125 GeV scalar at the LHC really the SM Higgs boson?


 \rightarrow Still room for BSM!

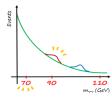
• Some BSM theories predict **modified and extended** Higgs sectors, possibly with **additional low-mass** (< **125 GeV**) scalars/pseudoscalars.

- & General Two Higgs Doublet Model (2HDM):
 - * 2 Higgs doublets (h, H, a, H^{\pm})
 - * 4 types of models ($tan\beta$, α)
 - ★ compatible with a 125 GeV SM-Like scalar (h or H) + a lighter Higgs Boson (a or h) in the "alignment limit".
- **A Next-to-Minimal Supersymmetric Standard Model** (NMSSM):
 - * 2 Higgs doublets & 1 singlet superfields $(h_1, h_2, h_3, a_1, a_2, H^{\pm})$
 - \star solved the known " μ -problem" of MSSM;
 - * compatible with a 125 GeV SM-Like scalar (h_1 or h_2) & a mostly "singlet-like" lighter Higgs Boson (a_1 or h_1).

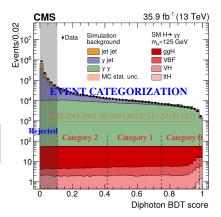

The H $\rightarrow \gamma \gamma$ Decay Channel

Higgs

$\mathbf{H}\!\!\rightarrow\gamma\gamma$


- Clean signature with **two isolated and highly** energetic photons
- Final state fully reconstructed with excellent mass resolution
- Large background from QCD $(\gamma \gamma \gamma j jj)$

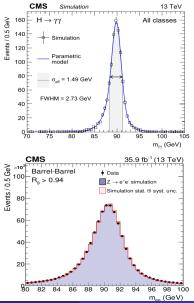
6/21


Analysis Strategy

- \heartsuit Inherit analysis strategy from standard H $\rightarrow \gamma\gamma$ analysis
- Event categorization on mass resolution and S/B
- Signal extracted from background by **fitting the observed di-photon mass distributions** in each category

Comparisons	8 TeV	13 TeV
Luminosity	19.7 fb ⁻¹	35.9 fb ⁻¹
Search Range	[80, 110] GeV	[70, 110] GeV
HLT paths	2	1
Categories	4	3

- Select two "good quality" photons
- Measure photon energy precisely
- Find the **primary vertex** of the decay



Photon Energy

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

- Photon energy reconstructed by building clusters of energy deposits in the Electromagnetic Calorimeter.
- Energy and its uncertainty corrected for local and global shower containment ⇒ Regression Technique:
 - Corrects photons' energies
 - Provides an estimate of energy resolution
- Energy Scale in data corrected as a function of data taking epochs, pseudorapidity and EM shower width
- **Smearing** to the reconstructed photon energy in **Mont Carlo** to match the resolution in data
- \Rightarrow **Z** \rightarrow **ee peak** as reference

CMS-PAS-HIG-16-040 (JHEP 11 (2018) 185)

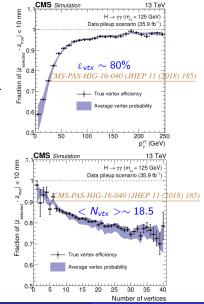
IHEP Beijing

Vertex Identification

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

• Vertex assignment considered as correct within 1 cm of the diphoton interaction point.

- \Rightarrow **negligible impact** on mass resolution:
- Multi-variate approach:


• Observables related to **tracks recoiling** against the diphoton system

• direction of conversion tracks

• Second MVA discriminant to estimate the probability for the vertex assignment to be within 1 cm

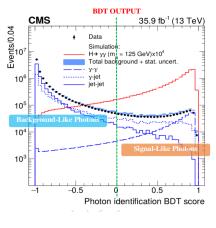
 \Rightarrow used later for **diphoton classification**

• Method validated with $\mathbf{Z} \rightarrow \mu\mu$ events, by refitting vertices ignoring the muon tracks

• Trigger selection:

• double-photon trigger paths based on transverse energy, H/E, electromagnetic shower shapes and isolation variables, $m_{\gamma\gamma}$

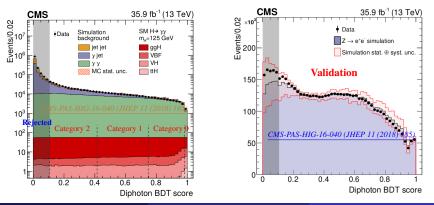
• Preselection:


• Similar to trigger requirements, but more stringent

• Photon Identification:

• Multi-Variate approach to reject fake photon candidates (mainly from π^0 mesons produced in jets)

• Shower shape and isolation observables, median energy density (ρ)

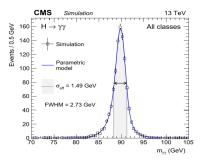

• **BDT output** provides an estimate of the per-photon quality

CMS-PAS-HIG-16-040 (JHEP 11 (2018) 185)

Untagged Events

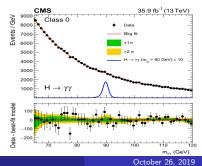
- All the inclusive events are categorized according to the **photon kinematics**, per-event **mass resolution**, **photon ID** and **good vertex probability** by a **MultiVariate Classifier**
- The number of categories and their boundaries are **optimized** to maximize the **expected significance**
- Method validated with $Z \rightarrow ee$ events, where the electrons are reconstructed as photons

IHEP Beijing

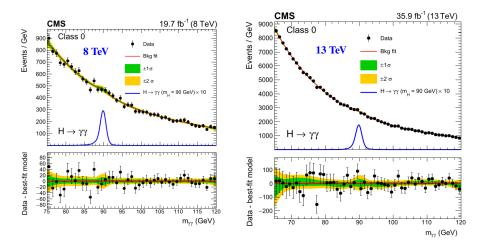

Signal and Background Model

Background

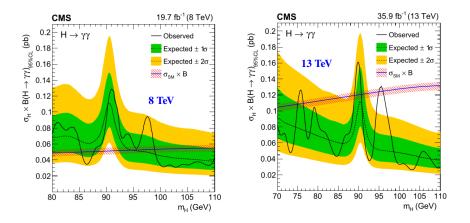
Signal


Parametrized model of Higgs boson mass shape

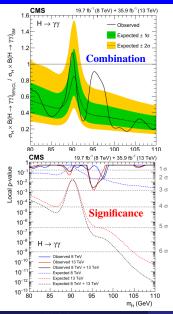
- Obtained from Simulation
- MC tuning and data/MC efficiency scale factors applied



Background model extracted from data


- · Different functional forms used for each category
- Sum of polynomial (chosen from 4 families) + Double-sided Crystal Ball (DCB) functions for relic Z→ee component;
- Choice of function treated as a **discrete nuisance parameter**
- DCB: shape parameters from MC "double-fake" events, syst. uncertainty from "single-fake" events

Mass Spectrum


Results

- \rightarrow 8 TeV: Minimum (Maximum) limit on $\sigma \times$ Br: 31 (133) fb at m_H = 102.8 (91.1) GeV
- \rightarrow **13 TeV**: Minimum (Maximum) limit on $\sigma \times$ **Br**: 26 (161) fb at m_H = 103.0 (89.9) GeV
- Production processes assumed in **SM proportions**.

IHEP Beijing

Results

• Normalized Upper limits on $\sigma \times Br$:

 \rightarrow Minimum (Maximum) Limit: 0.17(1.13) at $m_H = 103.0 (90.0)$ GeV

• Expected and observed local p-values: \rightarrow 8 TeV: Excess with $\sim 2.0\sigma$ local significance at m_H = 97.6 GeV \rightarrow 13 TeV: Excess with $\sim 2.9\sigma$ local (1.47 σ global) significance at m_H = 95.3 GeV \rightarrow 8TeV+13 TeV: Excess with $\sim 2.8\sigma$ local (1.3 σ global) significance at m_H = 95.3 GeV

More data are required to ascertain the origin of this excess.

- Results of the CMS low mass $H \rightarrow \gamma \gamma$ analysis have been reported, using 35.9 (19.7) fb⁻¹ of collision data collected in 2016 (2012) at 13 (8) TeV;
- No significant $(>3\sigma)$ excess with respect to the expected number of background events is observed:
 - CMS Run I (8 TeV): Modest excess with maximum local significance 2.0 σ at m_H = 97.6GeV;
 - CMS Run II (13 TeV 2016 data): Modest excess with maximum local significance 2.9σ at $m_H = 95.3$ GeV;
 - Combination results (Run I and Run II): Modest excess with maximum local significance 2.8σ at $m_H = 95.3$ GeV;

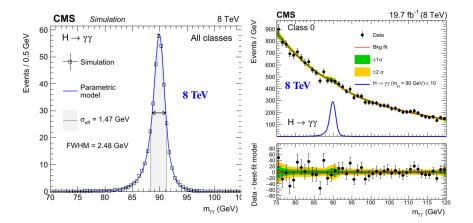
** Looking forward to the results of *13TeV 2017 data* or *full RunII data* !

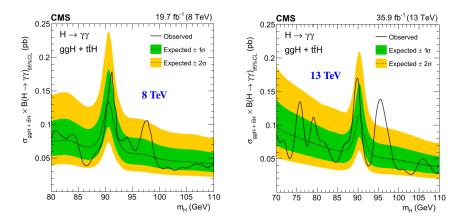
BackUp

μ problem

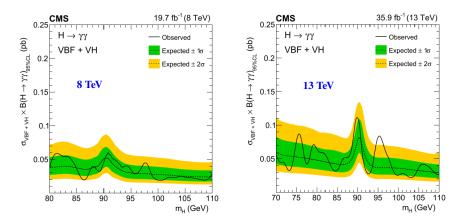
• MSSM:

 \rightarrow 2 Higgs doublets(2 CP-even, 1 CP-odd and 2 charged Higgs bosons) $\rightarrow \mu$ problem: There's a mass term μ in the low energy Higgs which seems unrelated to the electroweak scale;


• Solution of μ problem in NMSSM:


 \rightarrow NMSSM introduces a new gauge singlet superfield which only couples to the Higgs sector in a similar way as the Yukawa coupling and give rise to a effective μ -term to solve the " μ problem";

 \rightarrow The new singlet adds additional degrees of freedom to the NMSSM particle spectrum.


 \rightarrow 2 Higgs doublets (3 CP-even, 2 CP-odd and 2 charged Higgs bosons).

Signal and Background Model (8 TeV)

• Per-process limits on $\sigma \times$ Br assuming 100% gluon-induced processes (ggH, ttbarH in SM proportions)

• Per-process limits on $\sigma \times$ Br assuming 100% fermion-induced processes (VBF, VH in SM proportions)