

Top quark FCNC in Leptoquark interpretations of $R_{D^{(*)}}$ anomaly

Peiwen WU (吴 培文) Southeast University (东南大学)

arXiv: 1812.08484 JHEP07(2019)025 Tae Jeong Kim (Hanyang U.) Pyungwon Ko (KIAS) Jinmian Li (Sichuan U.) Jiwon Park (Hanyang U.)

> "The 5th China LHC Physics Workshop" DLUT, Oct. 26nd, 2019

Outline

- $R_{D^{(*)}}$ in rare *B* decays
- Leptoquark explanations of $R_{D^{(*)}}$
 - SU(2) singlet: S_1 , U_1
- Implications on top FCNC
 - Tree level
 - 1-loop level
- Collider prospects
- Summary

see more in talks of N. Serra & J. Zupan

$R_{D^{(*)}}$ in rare *B* decays, lepton Non-universality

Low-energy EFT,
$$R_{D}^{(*)}$$

$$= (C_{SM}\delta_{l\tau} + C_{V_1}^l)O_{V_1}^l + C_{V_2}^lO_{V_2}^l + C_{S_1}^lO_{S_1}^l + C_{S_2}^lO_{S_2}^l + C_T^lO_T^l$$

$$= 1, 2, 3 \text{ being the neutrino generation index}$$

$$O_{V_{1}}^{l} = (\bar{c}_{L}\gamma^{\mu}b_{L})(\bar{\tau}_{L}\gamma_{\mu}\nu_{lL}), \quad O_{V_{2}}^{l} = (\bar{c}_{R}\gamma^{\mu}b_{R})(\bar{\tau}_{L}\gamma_{\mu}\nu_{lL}), O_{S_{1}}^{l} = (\bar{c}_{L}b_{R})(\bar{\tau}_{R}\nu_{lL}), \quad O_{S_{2}}^{l} = (\bar{c}_{R}b_{L})(\bar{\tau}_{R}\nu_{lL}), O_{T}^{l} = (\bar{c}_{R}\sigma^{\mu\nu}b_{L})(\bar{\tau}_{R}\sigma_{\mu\nu}\nu_{lL}).$$

LQ contributions

 $\mathcal{L}^{\mathrm{LQ}} = \mathcal{L}^{\mathrm{LQ}}_{F=0} + \mathcal{L}^{\mathrm{LQ}}_{F=-2} \,,$

$$\mathcal{L}_{F=0}^{LQ} = \left(h_{1L}^{ij} \bar{Q}_{L}^{i} \gamma_{\mu} L_{L}^{j} + h_{1R}^{ij} \bar{d}_{R}^{i} \gamma_{\mu} \ell_{R}^{j} \right) U_{1}^{\mu} + h_{3L}^{ij} \bar{Q}_{L}^{i} \boldsymbol{\sigma} \gamma_{\mu} L_{L}^{j} U_{3}^{\mu} + \left(h_{2L}^{ij} \bar{u}_{R}^{i} L_{L}^{j} + h_{2R}^{ij} \bar{Q}_{L}^{i} i \sigma_{2} \ell_{R}^{j} \right) R_{2} + \text{h.c.},$$

$$\mathcal{L}_{F=-2}^{LQ} = \left(g_{1L}^{ij} \bar{Q}_{L}^{c,j} i\sigma_{2} L_{L}^{j} + g_{1R}^{ij} \bar{u}_{R}^{c,i} \ell_{R}^{j} \right) S_{1} + g_{3L}^{ij} \bar{Q}_{L}^{c,i} i\sigma_{2} \boldsymbol{\sigma} L_{L}^{j} \boldsymbol{S}_{3} + \left(g_{2L}^{ij} \bar{d}_{R}^{c,i} \gamma_{\mu} L_{L}^{j} + g_{2R}^{ij} \bar{Q}_{L}^{c,i} \gamma_{\mu} \ell_{R}^{j} \right) V_{2}^{\mu} + \text{h.c.},$$

$$C_{\mathcal{V}_{1}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1L}^{23*}}{2M_{S_{1}}^{2}} - \frac{g_{3L}^{kl} g_{3L}^{23*}}{2M_{S_{3}}^{2}} + \frac{h_{1L}^{2l} h_{1L}^{k3*}}{M_{U_{1}}^{2}} - \frac{h_{3L}^{2l} h_{3L}^{k3*}}{M_{U_{3}}^{2}} \right]$$

$$C_{\mathcal{V}_{2}}^{l} = 0,$$

$$C_{S_{1}}^{l} = \sum_{k=1}^{3} V_{k3} \left[-\frac{2g_{2L}^{kl} g_{2R}^{23*}}{M_{V_{2}}^{2}} - \frac{2h_{1L}^{2l} h_{1R}^{k3*}}{M_{U_{1}}^{2}} \right],$$

$$C_{S_{2}}^{l} = \sum_{k=1}^{3} V_{k3} \left[-\frac{g_{1L}^{kl} g_{1R}^{23*}}{2M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{2M_{L_{2}}^{2}} \right],$$

$$C_{\mathcal{T}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1R}^{23*}}{2M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{2M_{R_{2}}^{2}} \right],$$

$$D_{\mathcal{T}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1R}^{23*}}{8M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{8M_{R_{2}}^{2}} \right],$$

$$D_{\mathcal{T}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1R}^{23*}}{2M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{8M_{R_{2}}^{2}} \right],$$

$$D_{\mathcal{T}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1R}^{23*}}{2M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{8M_{R_{2}}^{2}} \right],$$

Dumont et al. 1603 05248

LQ contributions

 $\mathcal{L}^{\mathrm{LQ}} = \mathcal{L}^{\mathrm{LQ}}_{F=0} + \mathcal{L}^{\mathrm{LQ}}_{F=-2} \,,$

$$\mathcal{L}_{F=0}^{LQ} = \left(h_{1L}^{ij} \bar{Q}_{L}^{i} \gamma_{\mu} L_{L}^{j} + h_{1R}^{ij} \bar{d}_{R}^{i} \gamma_{\mu} \ell_{R}^{j} \right) U_{1}^{\mu} + h_{3L}^{ij} \bar{Q}_{L}^{i} \boldsymbol{\sigma} \gamma_{\mu} L_{L}^{j} U_{3}^{\mu} + \left(h_{2L}^{ij} \bar{u}_{R}^{i} L_{L}^{j} + h_{2R}^{ij} \bar{Q}_{L}^{i} i \sigma_{2} \ell_{R}^{j} \right) R_{2} + \text{h.c.},$$

$$\mathcal{L}_{F=-2}^{LQ} = \left(g_{1L}^{ij} \bar{Q}_{L}^{c,j} i\sigma_{2} L_{L}^{j} + g_{1R}^{ij} \bar{u}_{R}^{c,i} \ell_{R}^{j} \right) S_{1} + g_{3L}^{ij} \bar{Q}_{L}^{c,i} i\sigma_{2} \boldsymbol{\sigma} L_{L}^{j} \boldsymbol{S}_{3} + \left(g_{2L}^{ij} \bar{d}_{R}^{c,i} \gamma_{\mu} L_{L}^{j} + g_{2R}^{ij} \bar{Q}_{L}^{c,i} \gamma_{\mu} \ell_{R}^{j} \right) V_{2}^{\mu} + \text{h.c.},$$

Angelescu et al, 1808.08179

nerica	l fit	$m_{LQ} = 1 \text{ TeV}$	Dumont <i>et al,</i> 1603.05248
Leptoquark		$\bar{B} \to D^{(*)} \tau \bar{\nu}$	$\bar{B} \to X_s \nu \bar{\nu}$
S_1	1.64 $0.19 < g_{1L}^{33}g_1^2$ 1.04	$\begin{aligned} -0.87 &< g_{1L}^{33} g_{1R}^{23*} < -0.54 \\ &< g_{1L}^{3i} g_{1R}^{23*} < 1.81 (i = 1, 2) \\ _{L}^{3*} &< 0.48, -5.59 < g_{1L}^{33} g_{1L}^{23*} < -5.87 \\ &< g_{1L}^{3i} g_{1L}^{23*} < 1.67 (i = 1, 2) \end{aligned}$	$ g_{1L}^{3i}g_{1L}^{2j*} \lesssim 0.15$
$oldsymbol{S}_3$	$0.19 < g_{3L}^{33} g_3^2$ 1.04	$\begin{aligned} & \overset{3*}{_{L}} < 0.48, \ -5.59 < g_{3L}^{33} g_{3L}^{23*} < -5.87 \\ & < g_{3L}^{3i} g_{1L}^{23*} < 1.67 (i=1,2) \end{aligned}$	$ g_{3L}^{3i}g_{3L}^{2j*} \lesssim 0.15$
R_2	1.	$64 < \left \operatorname{Im}(h_{2L}^{2i} h_{2R}^{33*}) \right < 1.81$	-
V_2	g_{21}^{3}	$_{L}g_{2R}^{23*}$: no region within 2σ	$ g_{2L}^{3i}g_{2L}^{2j*} \lesssim 0.07$
U_1	$0.10 < h_{1L}^{23} h_1^3$ $0.52 \cdot h_1^{22}$	$\begin{aligned} & h_L^{3*} < 0.24, -2.94 < h_{1L}^{23} h_{1L}^{33*} < -2.86 \\ & < h_{1L}^{2i} h_{1L}^{33*} < 0.84 (i=1,2) \\ & h_{1R}^{33*}: \text{ no region within } 2\sigma \end{aligned}$	0
$oldsymbol{U}_3$	$0.10 < h_{3L}^{23} h_3^3$ $0.52 \cdot$	$\begin{aligned} & \overset{3*}{_{L}} < 0.24, \ -2.94 < h^{23}_{3L} h^{33*}_{3L} < -2.8 \\ & < h^{2i}_{3L} h^{33*}_{3L} < 0.84 (i=1,2) \end{aligned}$	$ h_{3L}^{2i}h_{3L}^{3j*} \lesssim 0.04$

Numerical fit

only two non-vanishing couplings

 $\ell = 1 \text{ or } 2 \text{ or } 3$

 $\ell = 1 \text{ or } 2 \text{ or } 3$

Sept. 2018 | LHCTopWG Summary

Top quark at LHC

- fairly good agreements for cross section
- within theoretical uncertainties: scales of Ren. & Fact., PDF, α_S

$t\bar{t}$ cross section (pb)

single t cross section (pb)

Sept. 2018 | LHCTopWG Summary

Top quark at LHC

$m_t = 172.69 \pm 0.48 \text{ GeV}$

ATLAS+CMS Preliminary LHCtopWG	m _{top} summary, √s = 7-13 TeV	November 2018
World comb. (Mar 2014) [2] stat total uncertainty	total stat	- Def
	$m_{top} \pm total (stat \pm syst)$	Vs Ret.
World comb (Mar 2014)	$173.23 \pm 0.33 (0.33 \pm 0.00)$	7 IEV [1]
	$172.33 \pm 1.27 (0.75 \pm 1.02)$	7 ToV [2]
ATLAS dilenton	$172.00 \pm 1.21 (0.70 \pm 1.02)$	7 TeV [3]
ATLAS all iets	175.1+1.8 (1.4+1.2)	7 TeV [4]
ATLAS single top	172.2±2.1 (0.7±2.0)	8 TeV [5]
ATLAS, dilepton	172.99 ± 0.85 (0.41± 0.74)	8 TeV [6]
ATLAS. all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]
ATLAS, I+jets	172.08 ± 0.91 (0.39 ± 0.82)	8 TeV [8]
ATLAS comb. (Oct 2018) H	버 172.69 ± 0.48 (0.25 ± 0.41)	7+8 TeV [8]
CMS, I+jets ⊢	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [9]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [10]
CMS, all jets 🛏	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [11]
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [12]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [12]
CMS, all jets	H 172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [12]
CMS, single top	• + 1 172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [13]
CMS comb. (Sep 2015)	H 172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [12]
CMS, I+jets	1 172.25 ± 0.63 (0.08 ± 0.62)	13 TeV [14]
CMS, dilepton	H 172.33 ± 0.70 (0.14 ± 0.69)	13 TeV [15]
CMS, all jets ⊢⊶	IT22.34 ± 0.79 (0.20 ± 0.76) [1] ATLAS-CONF-2013-102 [2] aXix+1403.4427 [3] Eur.Phys.J.C75 (2015) 330 [4] Eur.Phys.J.C75 (2015) 181 [6] Phys.Lett.B781 (2016) 350 [6] Phys.Lett.B781 (2016) 350	13 TeV [16] [13] EPJC 77 (2017) 354 [14] arXiv:1805.01428 [15] CMS PAS TOP-17-001 [16] CMS PAS TOP-17-008
		105
170 170	170 180	100
	m _{top} [GeV]	

q = c $V = \{g, Z, \gamma, H\} \sim \{10^{-4}, 10^{-4}, 10^{-3}, 10^{-3}\}$

q = u, slightly stronger limits, but same order

 $Br(t \to qV)$

LQ limits at LHC

- to set limits, specific LQ decay modes are assumed
- currently, LQ mass bounds are 1 ~ 2 TeV, stronger for Vector LQ

Decays	LQs	Scalar LQ limits	Vector LQ limits	\mathcal{L}_{int} / Ref.
$jj \tau \bar{\tau}$	S_1, R_2, S_3, U_1, U_3	_	_	_
$b\bar{b}\tau\bar{\tau}$	R_2, S_3, U_1, U_3	$850 \ (550) \ { m GeV}$	1550 (1290) GeV	$12.9 \text{ fb}^{-1} [52]$
$t\bar{t}\tau\bar{\tau}$	S_1, R_2, S_3, U_3	$900~(560)~{ m GeV}$	1440 (1220) GeV	$35.9 \text{ fb}^{-1} [53]$
$jj\muar\mu$	S_1, R_2, S_3, U_1, U_3	1530 (1275) GeV	2110 (1860) GeV	$35.9 \text{ fb}^{-1} [54]$
$b ar{b} \mu ar{\mu}$	R_2, U_1, U_3	$1400 (-) {\rm GeV}$	1900 (1700) GeV	$36.1 \text{ fb}^{-1} [55]$
$t \bar{t} \mu \bar{\mu}$	S_1, R_2, S_3, U_3	$1420 (950) { m GeV}$	$1780 \ (1560) \ {\rm GeV}$	$36.1 \text{ fb}^{-1} [56, 57]$
jj uar u	R_2, S_3, U_1, U_3	$980~(640)~{\rm GeV}$	1790 (1500) GeV	$35.9 \text{ fb}^{-1} [58]$
$b\bar{b}\nu\bar{ u}$	S_1, R_2, S_3, U_3	$1100 (800) { m GeV}$	1810 (1540) GeV	$35.9 \text{ fb}^{-1} [58]$
$t\bar{t}\nu\bar{ u}$	R_2, S_3, U_1, U_3	$1020 (820) { m GeV}$	$1780 \ (1530) \ {\rm GeV}$	$35.9 \text{ fb}^{-1} [58]$

Angelescu *et al,* 1808.08179

Top FCNC at tree-level, 3-body Tree $t \to c \tau^- \ell_i^+$ $t \rightarrow c \nu_{\tau} \bar{\nu}_i$ scalar S_1 vector U_1 t(b)t(b) S_1 [R] U_1 [L][L][L] \mathcal{C} С $\begin{bmatrix} g_{1R}^{ij} \overline{u_{Ri}^C} e_{Rj} S_1 & h_{1L}^{ij} \overline{Q}_i \gamma_\mu L_j U_1^\mu \end{bmatrix}$ $h_{1L}^{ij} ar{Q}_i \gamma_\mu L_j U_1^\mu$ $g_{1L}^{ij}\,\overline{Q^C}i au_2L_jS_1$ $\bar{\nu}_i$ $\ell_i^+(\bar{\nu}_i)$

1-loop Top FCNC at one-loop, 2-body

- we only consider loop for scalar S_1
- loop of vector U_1 needs UV-completion of m_{U_1} generation
 - SM-GIM-like mechanism needed to cancel divergence
 - more complete flavor structure needed

+ external leg diagrams

$$\begin{array}{c} \text{Tree-level:} \ R_{D}(*) \ \text{fit of} \ \frac{g_{L}g_{R}}{m_{LQ}^{2}} \text{ naturally implies } Br_{t}^{FCNC} \\ \hline \text{scalar } S_{1} \quad t \to c\tau^{-}\ell_{i}^{+} \qquad t \to c\nu_{\tau}\bar{\nu}_{i} \qquad \text{vector } U_{1} \\ \hline \begin{pmatrix} t(b) & [L] & S_{1} & [R] & c \\ \hline & \ell_{i}^{+}(\bar{\nu}_{i}) & \tau^{-} & \ell_{i}^{+} \\ \hline & \ell_{i}^{+}(\bar{\nu}_{i}) & \tau^{-} & \ell_{i}^{+} \\ \hline & \nu_{\tau}(\tau^{-}) & \bar{\nu}_{i} \\ \hline & S_{1}: Br(t \to c\tau^{-}\ell_{l}^{+}) \approx \frac{1}{\Gamma_{t,SM}} \left(\frac{m_{t}^{5}}{6144\pi^{3}}\right) |\frac{g_{L}^{3l}g_{1R}^{23*}}{M_{S_{1}}^{2}}|^{2} = 10^{-6} \times \begin{cases} 1.4 \sim 1.8 \quad l = 1,2 \\ 0.16 \sim 0.41 \quad l = 3 \\ 0.16 \sim 0.41 \quad l = 3 \\ \hline & U_{1}: Br(t \to c\nu_{\tau}\bar{\nu}_{l}) \approx \frac{1}{\Gamma_{t,SM}} \left(\frac{m_{t}^{5}}{1536\pi^{3}}\right) |\frac{h_{11}^{33}h_{1L}^{2l*}}{M_{U_{1}}^{2}}|^{2} = 10^{-6} \times \begin{cases} 0.58 \sim 1.5 \quad l = 1,2 \\ 17 \sim 19 \quad l = 3 \end{cases} \end{array}$$

Given the coupling chirality we choose, only left-handed part appears in dipole

$$\begin{split} f_{TR}^{g} &= f_{TR}^{\gamma} = f_{TR}^{Z} = 0 \\ f_{TL}^{g} &\simeq \frac{1}{16\pi^{2}} g_{s} m_{\tau} \frac{g_{1L}^{33} g_{1R}^{23*}}{M_{S_{1}}^{2}} \\ &\times \frac{1}{12} \left(-6 \left(22x_{\tau} x_{t} + 3x_{t} + 16x_{\tau} + 6 \right) \log x_{\tau} - 49x_{t} - 48 \right) \\ f_{TL}^{\gamma} &\simeq -\frac{1}{16\pi^{2}} em_{\tau} \frac{g_{1L}^{33} g_{1R}^{23*}}{M_{S_{1}}^{2}} \\ &\times \frac{1}{3} \left(\frac{1}{6} \left(14x_{t} x_{\tau} + x_{t} + 9x_{\tau} + 3 \right) + (x_{t} + 1) x_{\tau} \log x_{\tau} \right), \end{split}$$

S_1 collider prospects via $t\bar{t}$ production

(step-1) N ~ 2.5×10^9 @ 3 ab⁻¹ LHC-13

Cut-and-count analysis

$$1 \ell, \geq 3 j \ni \{1 b, 2 \tau\}$$

- Selection 1: Exactly one lepton, at least three jets including exactly one b jet and two τ jets. $2 \ell \ni \{\mu, \ell\}, \ge 2 j \ni \{1 b, 1 \tau\}$
- Selection 2: Exactly two leptons, at least one muon, at least 2 jets including exactly one b jet and one τ jet. $1 \ell, \geq 2 j \ni \{1 b\}$
- Selection 3: Exactly one lepton and more than two jets in the final state, where one of the jet is b-tagged, the missing transverse energy $E_T^{\text{miss}} > 80 \text{ GeV}$.

	VV	DY	W+jet	$t \bar{t}$	$t \to c \mu \tau$	$t \to c \tau \tau$	$t \to c \nu \nu$
Selection 1	9559	108095	-	1189719	28	19	0.3
Selection 2	5433	54047	-	839651	39	5	0.0
Selection 3	296814	594522	16530371	64764862	140	94	102

@ 3 ab^{-1} LHC-13			
one leptonic top			

- simple cuts give signal/BG ~ 10^{-5}
- advanced techniques needed

Multi-variate analysis of BDT method

- Machine learning techniques based on
 - kinematic variables of the final objects
 - angle distances b.w. {leptons, MET}
 - •

- multiplicity of jets, b jet, c jet and τ jet
- p_T, E_T^{miss} of the leading lepton
- p_T of the leading τ jet
- H_T which includes jets, leptons and E_T^{miss}
- p_T of leptons + E_T^{miss} , p_T of leptons + τ jet
- $\Delta R(\tau, \ell), \Delta \phi(\ell, E_T^{\text{miss}}), \Delta \phi(\tau, E_T^{\text{miss}})$
- $\Delta \phi(\tau + \ell, E_T^{\text{miss}})$
- $\Delta R(\ell, \text{ leading } b \text{ jet})$

Multi-variate analysis of BDT method

- Increase of signal significance by O(30%) after using shape of final BDT distribution
- To further increase sensitivity
 - much larger event samples
 - more sophisticated statistical tools to perform shape analysis

Summary

- Anomalies in rare B decays have stimulated active discussions.
- LeptoQuark S_1, U_1 interpretations of $R_{D^{(*)}}$ naturally imply top FCNC
 - tree-level: ~10⁻⁶ $S_1 : Br(t \to c\tau^- \ell_l^+) \qquad U_1 : Br(t \to c\nu_\tau \bar{\nu}_l)$
 - loop-level: $\sim 10^{-10}$ $S_1 : Br(t \to c\gamma)$
- Collider searches, $t\overline{t}$ events as an example
 - challenging for simple cut-and-count method
 - Multi-variate-analysis using BDT can improve the sensitivity

Thank you for listening

Back up

Moriond, 2019

$R_{K^{(*)}}$ in rare B decays, lepton Non-universality

$$\begin{split} R_{K^{(*)}}^{\exp} &< R_{K^{(*)}}^{\text{SM}} \quad \textbf{~ 2.5 \sigma deviation from SM} \\ R_{K^{(*)}}^{[q_{1}^{2},q_{2}^{2}]} &= \frac{\int_{q_{1}^{2}}^{q_{2}^{2}} dq^{2} \frac{d}{dq^{2}} Br(B \to K^{(*)} \mu \mu)}{\int_{q_{1}^{2}}^{q_{2}^{2}} dq^{2} \frac{d}{dq^{2}} Br(B \to K^{(*)} ee)} \\ \hline q^{2} &= (p_{l^{+}} + p_{l^{-}})^{2} & \text{SM ~ 1} \end{split}$$

 $R_K \equiv R_{K^+}^{[1,6]} = 0.846^{+0.060+0.016}_{-0.054-0.014} \text{ (LHCb)},$

 $R_{K^*} \equiv R_{K^{*0}}^{[1.1,6]} = 0.96^{+0.45}_{-0.29} \pm 0.11$ (Belle).

$$R_{K^{*0}}^{[0.045,1.1]} = 0.52_{-0.26}^{+0.36} \pm 0.05 \text{ (Belle)}$$