

Di-Higgs and BSM Higgs Search at LHC

Lei Zhang (张雷)

leizhang1801@nju.edu.cn

CLHCP in Dalian, 23-27 Oct. 2019

Disclaimer

- I am on behalf of ATLAS and CMS. Major results in this talk have been published by both, respectively. Due to my limited knowledge, the content was not balanced between two experiments.
- If I put both references around the results, the slides will be too crowded. All presented public results of ATLAS and CMS can be found or ask/email us:
 - ATLAS public results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

CMS public results

http://cms-results.web.cern.ch/cms-results/public-results/publications/ http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/

Higgs boson established, solidly!

How it happened?

- We knows the beginning and we know the ending
- But no clue in between

How it happened?

- We knows the beginning and we know the ending
- But no clue in between

• SM assumed simplest form

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

• Nature can be a bit more complicated

$$V' = V + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \cdots$$

$\phi > 0$ $\phi > 0$

Sakharov Conditions

- 1) B Violation; 2) C/CP Violation
- 3) Departure from Thermal Equilibrium
 - (EW Phase Transition)

Electro-Weak Phase Transition: 1st order or 2nd order ?

Sakharov Conditions

- 1) B Violation; 2) C/CP Violation
- 3) Departure from Thermal Equilibrium
 - (EW Phase Transition)

Electro-Weak Phase Transition: 1st order or 2nd order ?

Sakharov Conditions

- 1) B Violation; 2) C/CP Violation
- 3) Departure from Thermal Equilibrium (EW Phase Transition)

Is the current vacuum stable?

Probe Higgs potential

• Expand Higgs potential about the minimum

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4 \implies V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$$

Probe Higgs potential

• Expand Higgs potential about the minimum

$$V(\phi) = -\mu^{2}\phi^{2} + \lambda\phi^{4} \implies V_{0} + \lambda v^{2}h^{2} + \lambda vh^{3} + \frac{\lambda}{4}h^{4}$$
$$= V_{0} + \frac{1}{2}m_{h}^{2}h^{2} + \frac{m_{h}^{2}}{2v^{2}}vh^{3} + \frac{1}{4}\frac{m_{h}^{2}}{2v^{2}}h^{4}$$
$$\boxed{m_{H}\forall \dot{\rho} \oplus } \qquad \boxed{\lambda hhh} \qquad \overbrace{} \qquad \atop[]]] \qquad []] \qquad []] \]$$

Probe Higgs potential

Expand Higgs potential about the minimum

$$V(\phi) = -\mu^{2}\phi^{2} + \lambda\phi^{4} \implies V_{0} + \lambda v^{2}h^{2} + \lambda vh^{3} + \frac{\lambda}{4}h^{4}$$
$$= V_{0} + \frac{1}{2}m_{h}^{2}h^{2} + \frac{m_{h}^{2}}{2v^{2}}vh^{3} + \frac{1}{4}\frac{m_{h}^{2}}{2v^{2}}h^{4}$$
$$\boxed{\lambda_{hhh} \otimes LHC} \qquad \qquad \lambda_{hhh} \qquad \qquad \lambda_{hhhh} \qquad \qquad \lambda_{hhh} \qquad \qquad \lambda_{hhhh} \qquad \qquad \lambda_{hhh} \qquad \qquad \lambda_{hhhh} \qquad \qquad \lambda_{hhhhh} \qquad \qquad \lambda_{hhhhh} \qquad \qquad \lambda_{hhhhh} \qquad \qquad \lambda_{hhhhh} \qquad \qquad \lambda_{hhhh} \qquad \qquad \lambda_{hhhh} \qquad \qquad \lambda_{hhhhh} \qquad \qquad \lambda_{hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh$$

Standard Model:
$$\lambda_{hhh} = \frac{m_h^2}{2v^2}$$

- Higgs-self coupling (λ_{hhh}) is crucial for probing Higgs potential
- λ_{hhh} can be measured in double Higgs production (di-Higgs) at LHC

Di-Higgs at LHC

 Cross section: 1000+ times smaller than single Higgs

Di-Higgs at LHC

- Cross section: 1000+ times smaller than single Higgs
- Deconstructive interference, further adding difficulties

Di-Higgs at LHC

- Cross section: 1000+ times smaller than single Higgs
- Deconstructive interference, further adding difficulties
- BSM physics can also contribute

Searching channels

 Various decay modes searched. lead channels: bbγγ, bbττ, bbbb

Di-Higgs: bbγγ

Backgrounds:

- QCD 2 jets+photon (or jet $\rightarrow \gamma$)
- Single H: bbH, (t)tH, etc

Analysis strategy

- m_{bb} and $m_{\gamma\gamma}$: to extract signal
- $m_{bb\gamma\gamma}$ important for λ_{hhh} extraction
 - $m_h = 125$ to constrain m_{bb} and $m_{\gamma\gamma}$
- ATLAS: cut-based; CMS: MVA-based
- Low Br., low bkg, high S/B

Di-Higgs: bbbb

Backgrounds

- Multi-jet(95%), top quark pair (ttbar) (5%)
- ATLAS: sideband
- CMS: shuffling two di-b systems

Event selection

- Resolved: anti-k_T R=0.4 Calo jet
- Boosted : anti-k_T R=1.0 Calo fatjet with R=0.2 trk-jet

- Both use di-Higgs invariant mass to fit
- High Br., high bkg, low S/B channel

Di-Higgs: bbττ

Backgrounds:

- ttbar, Jet faking τ: QCD Multi-jet
- Analysis strategy
- ATLAS: MVA-based;
- CMS: Cut-based, MT₂ to fit (PLB 728 (2014) 308–313)

Medium Br., medium S/B

Event selection

- $\tau_{had} \tau_{had}$: 2 hadronic decay τ
- $\tau_{lep} \tau_{had}$: 1 e/µ, 1 hadronic τ
- 2-3 neutrinos

Complicated channels: hh→bbWW

- Large Br(~25%), but noncolinear neutrinos and huge ttbar background
- Final states: $bblvlv (l=e/\mu)$, bblvjj
- Deep learning (DNN) has been used in this analysis at ATLAS and CMS

- Many theoretical studies:
 - e.g. M_T², Top/Higgsness, (J. H. Kim, et al, arXiv:1807.11498)
- Still room for theorists to play!

Di-Higgs summary: λ_{hhh}

- ATLAS: σ_{hh} <6.9 (10) x SM, -5.0 < λ_{hhh} < 12.0
- CMS: σ_{hh} < 22.2 (12.8) x SM, -11.8 < λ_{hhh} < 18.8 (-7.1 < λ_{hhh} < 13.6)

New results:

• λ_{hhh} can be constrained via Higgs precise measurement (Kunlin's talk)

Di-Higgs summary: BSM

Resonance search for spin-0 and spin-2 particles

-0.6 -0.8

-1.0

300

400

500

600

700

800

 $m_{\rm S}$ [GeV]

1.5

200

250

300

350

400

450

500

⁵⁵⁰ m_A [GeV] 22

Di-Higgs summary: BSM

н

н

Di-Higgs summary: BSM

 CMS explored 5 EFT operators, divided parameter space into 12 samples

Some personal reflections

- Performance of ATLAS and CMS are generally the similar.
 However, sensitivity order are different among three channels
- The difference maybe due the person-power. There are room for improvement.

Some personal reflections

Different final states different S/B

- bbbb: High Br., low S/B
- ττbb: Medium Br., medium S/B
- γγbb: Low Br., large S/B

As Run 3 and even HL-LHC,

- Statistical uncertainty will go down easily, not sure systematical one
- Background uncertainty become critical and hard to reduce
- Explore those high S/B final state

26

Some personal reflections

Beyond SM Higgs boson search

Extended Higgs sector

 Extension of Higgs sector could change the Higgs potential.

$$V_{\rm CxSM} = \frac{m^2}{2} \mathbf{H}^{\dagger} \mathbf{H} + \frac{\lambda}{4} (\mathbf{H}^{\dagger} \mathbf{H})^2$$

Extended Higgs sector

- Extension of Higgs sector could change the Higgs potential.
- For example, SM plus one singlet extension
 - Allow 1st order EW phase transition

$$V_{\text{CxSM}} = \frac{m^2}{2} \text{H}^{\dagger} \text{H} + \frac{\lambda}{4} (\text{H}^{\dagger} \text{H})^2 + \frac{\delta_2}{2} \text{H}^{\dagger} \text{H} |\mathbb{S}|^2 + \frac{b_2}{2} |\mathbb{S}|^2 + \frac{d_2}{4} |\mathbb{S}|^4 + \left(\frac{b_1}{4} \mathbb{S}^2 + a_1 \mathbb{S} + c.c.\right)$$

Benchmark models

Two-Higgs Doublets Model (2HDM)

- Minimum extension of Higgs sector
- Requested by MSSM

$$\phi_u = \begin{pmatrix} \phi_u^+ \\ \phi_u^0 \end{pmatrix} \quad v_u : \quad \text{VEV}_u$$
$$\phi_d = \begin{pmatrix} \phi_d^0 \\ \phi_d^- \end{pmatrix} \quad v_d : \quad \text{VEV}_d$$

• Two free parameters at tree level: m_A , tan $\beta = v_u/v_d$

Neutral Higgs bosons: MSSM as example

Coupling strength:

For $m_A \gg m_Z$: $\alpha \to \beta - \pi/2$ (coupling to down-type fermions enhanced by $\tan \beta$).

Neutral Higgs bosons: MSSM as example

Coupling strength:

For $m_A \gg m_Z$: $\alpha \to \beta - \pi/2$ (coupling to down-type fermions enhanced by $\tan \beta$).

Production modes:

Decay channels:

Neutral Higgs: A/H→ττ

- Final states: $\tau_{had} \tau_{had}$ and $\tau_{lep} \tau_{had}$
- Mass range 200–2250 GeV
- Categories: b-veto (ggh) and b-tag (bbh)
- Discriminant: total transverse mass

$$m_{\rm T}^{\rm tot} \equiv \sqrt{(p_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\tau_1} + \mathbf{p}_{\rm T}^{\tau_2} + \mathbf{E}_{\rm T}^{\rm miss})^2}$$

Neutral Higgs: $A/H \rightarrow t\bar{t}$

- Search range: 400-750 GeV, width Γ/m={0.5-25}%
- Exclusion in hMSSM
 - an mild excess at mA =400 GeV with Γ /m=4% 1.9 σ global (3.5 σ local)

Neutral Higgs: $A/H \rightarrow bb$ or $\mu\mu$

90

60

50

40

30 20

10

500

600

700

800

900

m₄ [GeV]

1000

ATLAS

 $70 - bb\phi, \phi \rightarrow bb$

80- vs=13 TeV, 27.8 fb-1

MSSM scenarios

Obs hMSSM

---- Exp hMSSM

±2σ hMSSM

---- Exp m.mod+

----- Exp m^{hod-}

±1σ hMSSM

A/H \rightarrow µµ: 2nd generation fermion

Type II and Flipped 2HDM

 Flavourful Higgs model

Charged Higgs $H^{\pm} \rightarrow \tau \nu$ or top+b

m_{⊣⁺} [GeV]

Doubly charged Higgs: $H^{\pm\pm}H^{\mp\mp} \rightarrow 4W$, 41

Inspired by Type II Seesaw Model

• $H^{\pm\pm}H^{\mp\mp} \rightarrow 4W$ e^+ Z/γ H^{--} $W^ W^ W^$

• $H^{\pm\pm}H^{\mp\mp} \rightarrow 4l$

Searches in various di-bosons

- Inspired by RS, 2HDM, GUT, etc.
- Diboson resonance searches
 - Vh, WW, WZ, ZZ
 - Big combination: qqqq, vvqq, lvqq, llqq,
 lvlv, llvv, lvll, llll, qqbb, vvbb, lvbb, and llbb

Low mass di-photon resonance

Light boson searches

Light bosons motivated by by

- Extended Higgs sector
 - NMSSM (2HDM+S), SM/2HDM+V
- 1st EW phase transition
- Dark matter

Summary

- The nature of EW spontaneous symmetry breaking is one of the most important topic in HEP
- Probing Higgs self coupling via di-Higgs production carried on extensively at ATLAS and CMS
 - One of most challenging measurement, need coherent effort from both experimentalists and theorists.
- Additional Higgs bosons, predicted from the extended Higgs sector, searched extensively at ATLAS and CMS
 - Crucial aspects for BSM physics study
 - Only some representative results shown, more can be found below

ATLAS public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u> CMS public results

- <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u>
- <u>http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/</u>

Atlas bbgg background

	1-tag		2-tag	
	Loose selection	Tight selection	Loose selection	Tight selection
Continuum background	117.5 ± 4.7	15.7 ± 1.6	21.0 ± 2.0	$3.74~\pm~0.78$
SM single-Higgs-boson background	5.51 ± 0.10	$2.20\ \pm\ 0.05$	1.63 ± 0.04	$0.56~\pm~0.02$
Total background	123.0 ± 4.7	17.9 ± 1.6	22.6 ± 2.0	$4.30~\pm~0.79$
SM Higgs boson pair signal	$0.219 {\pm} 0.006$	0.120 ± 0.004	$0.305 \pm \ 0.007$	0.175 ± 0.005
Data	125	19	21	3