Ghost rate study of the tracking at LHCb

Menglin Xu

Central China Normal University

The 5th China LHC Physics Workshop

24 Oct 2019, Dalian

1

LHCb detector

 \blacksquare Single arm forward spectrometer: 2 < η < 5

D Excellent detector performance:

- Track reconstruction efficiency >95%
- Momentum resolution $dp/p \sim [0.5\%-1\%]$
- Excellent particle identification

Track reconstruction

□ The LHCb tracking reconstruction contains two steps:

- Track finding pattern recognition algorithm
- Track fitting Kalman filter

Ghost sources

□ Long tracks mis reconstruction:

- Hadronic interaction with detector material- main sources
- T station segments mis-reconstruction
- VELO segments mis-reconstruction
- mis-matched between VELO and T-station

□ Ghost tracks: Low probability of χ^2 from the track fit and missing hits

□ 2012 data show more noise and worse S/B ratios than 2011 data

Problems are caused by background from mis-reconstructed ghost tracks

 $B \rightarrow hh$ channel in $B_s \rightarrow \mu\mu$ analysis

Reconstruction in two stages

- Fast stage (HLT1): partial event reconstruction
- Full stage (HLT2): full offline-like selection
- The majority of the LHCb tracking algorithms efficiency is limited by the ghost rate
- Need to make track reconstruction faster with low fake rate

DQuality of fit is generally worse for ghosts than for real tracks **D**Require χ^2 /ndof < 1.5

- Improves S/B ratio •
- Signal efficiency of 63.3%, Signal loss too high

DNeed something more efficient to suppress ghost tracks

 $B^+ \rightarrow J/\psi K^+$

5250

5300

5350

B mass [MeV]

5400

New algorithm: multivariate method

Multivariate classifier: MLP neural network combines several weak discriminants into one strong classifier discriminate between ghost and good tracks □ Input files(B inclusive MC):

- Signal: good tracks (>70% hits matched to a MC particle)
- Background: ghost tracks (<70% hits matched to a MC particle)

□ Various tracking variables, no PID

• Track fit quality, number of hits, momentum, detector occupancies

	Velo Track	Upstream Track	Downstream Track	Long Track	T Track
Total hit multiplicitie in VELO				\checkmark	
Total hit multiplicitie in UT	\checkmark	\checkmark	\checkmark	\checkmark	
Total Track fit χ^2	\checkmark	\checkmark		\checkmark	
Total Track fit NDOF	\checkmark	\checkmark			
η	\checkmark	\checkmark	\checkmark	\checkmark	
p_T		\checkmark	\checkmark		
FitVeloCHi2	\checkmark	\checkmark		\checkmark	
FitVeloNDOF	\checkmark	\checkmark			
FitTChi2			\checkmark	\checkmark	
FitTNDOF			\checkmark	\checkmark	
Observed hits in VELO	\checkmark	\checkmark		\checkmark	
Observed hits in UT		\checkmark	\checkmark	\checkmark	
Observed hits in FT		\checkmark	\checkmark	\checkmark	
UT Hits not used for the fit		\checkmark	\checkmark	\checkmark	
Match fit χ^2				\checkmark	
Exp VPHits					
Exp UTHits			\checkmark		
Exp FTHits					

Activation function

Introduces non-linear factors to compute nontrivial problems using only a small number of nodes

Hidden layer: Tanh(RunI) \rightarrow Sigmoid(RunII) (1 • Weight update Error Wo Last layer: exponential function(RunI+RunII) • W. Output X₂ Net input Activation function function 2.0 Tanh: $f(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$ Sigmoid: $f(x) = \frac{1}{1 + e^{-x}}$ Simple-Sigmoid: $f(x) = \frac{1}{1 + x^{2}}$ ReLU Leaky ReLU Softplus 1.0 0.5 0.0 ReLu: $f(x) = \max(0,x)$ -0.5

3

2

Discrimination power

□Good performance

- For the same signal efficiency, cutting on ghost probability is most efficient
- With similar ghost rejections, the signal efficiency of the ghost prob cut is much better
 - $\checkmark \chi^2 / ndof < 1.5: 63.3\%$
 - ✓ Ghost prob < 3 : 96.1%

 $B^+ \rightarrow J/\psi K^+$

\Box offline \rightarrow online quantity:

- Runl+2015(50ns) : offline quantity
- 2015(25ns): all tracks in HLT2 had to pass ghost probability selection, speed-up by a factor ~90
- Since 2016: processing in HLT1+HLT2, HLT2 input rate reduced by 4%
- CPU consumption decreased
 - ghost probability computation itself is **0.2%** of HLT CPU budeget
 - 22% fewer tracks, 23% less CPU time in RICH PID
 - Overall saving of 16% entire HLT CPU

Ghost probability can not only suppress background but also decrease CPU consumption

LHCb Upgrade

CPU timing decreased is expected

- Detector upgrades to copy with increased luminosity
 - ✓ Run III: 2 × 10³³ cm⁻²s⁻¹(~5 factor larger than RunII)
- Remove hardware trigger, increase output rate to storage

Integrated luminosity					
LHC era		HL_LHC era			
Run2 (2015-18)	Run3 (2021-24)	Run4 (2027-30)	Run5 + (2031+)		
9 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	> 300 fb ⁻¹ ??		

D Upgrade:

- Removed time-consuming variables(hit estimation)
- Activation functions at hidden layer: Sigmoid→ ReLU
 - ✓ Efficient gradient propagation
 - \checkmark Fast computation: Only comparison, addition and multiplication
- Activation functions at Last layer: exponential \rightarrow finite exponential
 - ✓ Replace the exponential operation with the finite number of multiplications
- □ The efficiency performance is almost the same
- Reduced timing of ghost probability algorithm by 97%

□Ghost tracks are a significant source of background

□Ghost probability: important part online reconstruction

- excellent ghost reduction with minor signal loss
- Highly decrease the CPU timing
- **D**Room for improvement
 - fast VDT-like implementations for SIMD types
 - add Scifi track position information in neural work

Backup

