Precision QCD Calculations for Heavy Quark Decays

Yu-Ming Wang
Nankai University

The 5th China LHC Physics Workshop
 Dalian, October 25, 2019

Why precision calculations?

- Understanding the general properties of power expansion in EFTs (HQET, SCET, NRQCD).
- Interesting to understand the strong interaction dynamics of heavy quark decays.
- Factorization properties of the subleading-power amplitudes.
- Renormalization and asymptotic properties of the higher-twist B-meson DAs.
- Interplay of different QCD techniques.
- Precision determinations of the CKM matrix elements $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$. Power corrections, QED corrections, BSM physics.
- Crucial to understand the CP violation in B-meson decays. Strong phase of $\mathscr{A}\left(B \rightarrow M_{1} M_{2}\right) @ m_{b}$ scale in the leading power.
- Indispensable for understanding the flavour puzzles (see EPS-HEP 2019 for updates).
- P_{5}^{\prime} and $R_{K^{(*)}}$ anomalies in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$.
- $R_{D^{(*)}}$ anomalies in $B \rightarrow D^{(*)} \ell \bar{v}_{\ell}$.
- Color suppressed hadronic B-meson decays.
- Polarization fractions of penguin dominated $B_{(s)} \rightarrow V V$ decays.

Theory tools for precision flavor physics

New Physics: $\mathscr{L}_{N P}$
\downarrow
$$
\text { EW scale }\left(m_{W}\right): \quad \mathscr{L}_{S M}+\mathscr{L}_{D>4}
$$
$$
\downarrow
$$
Heavy-quark scale $\left(m_{b}\right): \quad \mathscr{L}_{\text {eff }}=-\frac{G_{F}}{\sqrt{2}} \sum_{i} C_{i} Q_{i}+\mathscr{L}_{\text {eff }, D>6}$ \downarrow
QCD scale $\left(\Lambda_{\mathrm{QCD}}\right)$

- Aim: $\langle f| Q_{i}|\bar{B}\rangle=$?
- QCD factorization [Diagrammatic approach].
- SCET factorization [Operator formalism].
- TMD factorization.
- (Light-cone) QCD sum rules.
- Lattice QCD.
- Key concepts: Factorization, Resummation, Evolution.

Factorization in Classical Physics

- Galileo's Leaning Tower of Pisa Experiment:

$$
\mathscr{L}_{\mathrm{eff}}=\frac{1}{2} m \dot{h}^{2}-m g h .
$$

Symmetry of the effective Lagrangian: $h \rightarrow h+a$.
Dynamical interpretation: The force acting on the ball, $F=m g$, independent of h.

- Newton's Gravity Theory:

$$
V_{\text {full }}(h)=-G \frac{M m}{r}=-G \frac{M m}{R+h} .
$$

- Power expansion of the full potential energy:

$$
V_{\mathrm{eff}}(h)=C_{1}(R) m(h / R)+C_{2}(R) m(h / R)^{2}+\ldots
$$

The general form of the effective potential can be written without knowing $V_{\text {full }}$.

- Matching the full theory and the effective theory:

$$
C_{1}(R)=-C_{2}(R)=\frac{G M}{R}, \quad V_{\mathrm{eff}}(h)=m g h-\frac{m g}{R} h^{2}+\ldots .
$$

- Symmetry of the effective Lagrangian broken in the full theory.

$$
g(r)=\frac{G M}{r^{2}}, \quad r \frac{\partial}{\partial r} g(r)=\gamma_{g} g(r)
$$

This differential equation is actually a renormalization group equation.

Factorization in Quantum Physics

- Wigner-Eckart theorem:

$$
\left\langle\tau^{\prime} j^{\prime} m^{\prime}\right| T_{q}^{k}|\tau j m\rangle=\left\langle j k j^{\prime} \mid m q m^{\prime}\right\rangle\left\langle\tau^{\prime} j^{\prime}\right|\left|T^{k} \| \tau j\right\rangle .
$$

Separation of geometry and dynamics.

- Generalized Wigner-Eckart theorem in Lie algebra.

An example from $\mathrm{SU}(3): u, v$ and W are all 8 s .

$$
\langle u| W|v\rangle=\lambda_{1} \operatorname{Tr}[\bar{u} W v]+\lambda_{2} \operatorname{Tr}[\bar{u} v W] .
$$

Notice that $8^{3}=512$ matrix elements expressed in terms of only two parameters.

- Factorization for strong interaction physics.

An example from $B \rightarrow \gamma \ell v_{\ell}$:

$$
F_{V, \mathrm{LP}}(n \cdot p)=\frac{Q_{u} m_{B}}{n \cdot p} \tilde{f}_{B}(\mu) C_{\perp}(n \cdot p, \mu) \int_{0}^{\infty} d \omega \frac{\phi_{B}^{+}(\omega, \mu)}{\omega} J_{\perp}(n \cdot p, \omega, \mu) .
$$

- Separation of hard, hard-collinear and soft fluctuations.
- Key input: B-meson light-cone distribution amplitude $\phi_{B}^{+}(\omega, \mu)$.

Heavy-to-light form factors in QCD

- Long-standing tension between the exclusive and inclusive $\left|V_{u b}\right|$.

- Right handed current, underestimate of QCD uncertainties?

Factorization for heavy-to-light form factors

- Factorization formulae for semeleptonic B-meson decays [BBNS, BPRS, and many others].

$$
F_{i}^{B \rightarrow M}(E)=C_{i}^{(\mathrm{A} 0)}(E) \xi_{a}(E)+\int_{0}^{\infty} \frac{d \omega}{\omega} \int_{0}^{1} d v \underbrace{T_{i}(E ; \ln \omega, v)}_{C_{i}^{(\mathrm{B} 1)} * J_{i}} \phi_{B}^{+}(\omega) \phi_{M}(v) .
$$

Need the hadronic matrix elements of both the LP and NLP SCET currents!

- Diagrammatic factorization for heavy-to-light form factors at one loop [Beneke, Feldmann, 2001].
- Perturbative calculations of the hard matching coefficients $C_{i}^{(\mathrm{A} 0)}(E)$:
- One-loop SCET computations in [Bauer, Fleming, Pirjol, Stewart, 2001; Beneke, Kiyo, Yang, 2004].
- Two-loop SCET computations in [Bonciani, Ferroglia, 2008; Asatrian, Greub, Pecjak, 2008; Beneke, Huber, Li, 2009; Bell, 2009; Bell, Beneke, Huber, Li, 2011].
- Perturbative calculations of the hard matching coefficients $C_{i}^{(\mathrm{B} 1)}$:
- Infrared subtractions complicated by the appearance of evanescent operators and the D-dimensional Fierz transformation.
- One-loop SCET computations in [Becher, Hill, 2004; Hill, Becher, Lee, Neubert, 2004; Beneke, Yang, 2006].
- Factorization of $\xi_{P}(E)$ in $\mathrm{SCET}_{\text {II }}$ is not yet established at present. $\Leftrightarrow \xi_{P}(E)$ taken from the LCSR/LQCD calculations.

Different versions of light-cone sum rules

- Light-cone QCD sum rules with the light-meson LCDA [Ball, Braun, Khodjamirian, etc]:
- Interpolating the heavy B-meson by a local QCD current.
- Diagrammatical factorization for the vacuum-to-light-meson correction functions.
- Disadvantage: different non-perturbative inputs for different decay observables.
- Light-cone QCD sum rules with the B-meson LCDA [Khodjamirian, Lü, Shen, Wang, etc]:
- Interpolating the light energetic meson by a local QCD current.
- Diagrammatical factorization for the vacuum-to- B-meson correction functions.
- Advantage: universal non-perturbative inputs for different decay observables.
- Light-cone SCET sum rules with the B-meson LCDA [Feldmann, Lü, Shen, Wang, etc]:
- Interpolating the light energetic meson by a local SCET current.
- SCET factorization for the vacuum-to- B-meson correction functions.
- Advantage I: Computation of the short-distance functions much easier.
- Advantage II: Systematic resummation of enhanced logarithms beyond the LL accuracy.
- Light-cone QCD sum rules with the chiral current for the light meson [Huang, Li, Wu, etc]:
- Advantage: Twist-three light-meson LCDAs do not contribute (at least) at NLO.
- Heavy hadrons of both positive and negative parities enter the hadronic dispersion relation.
- Yet more versions have been constructed with different assumptions/approximations.

Light-cone QCD sum rules with light-hadron LCDA

- Semileptonic $B \rightarrow P$ form factors:
- LO QCD calculations of $B \rightarrow P$ form factors [Belyaev, Khodjamirian, Rückl, 1993].
- NLO QCD calculations of $B \rightarrow P$ form factors at twist-2 accuracy [Khodjamirian, Rückl, Weinzierl, Yakovlev, 1997].
- NLO QCD calculations of $B \rightarrow P$ form factors at twist-3 accuracy [Ball, Zwicky, 2005; Duplancic, Khodjamirian, Mannel, Melic, Offen, 2008].
- Improved NLO QCD calculations of $B \rightarrow P$ form factors at twist-3 accuracy [Khodjamirian, Mannel, Offen, Wang, 2011].
- (Partial) NNLO QCD calculations of $B \rightarrow P$ form factors at twist-2 accuracy [Bharucha, 2012].
- Semileptonic $B \rightarrow V\left(\rightarrow P_{1} P_{2}\right)$ form factors:
- NLO QCD calculations of $B \rightarrow V$ form factors at twist-3 accuracy [Ball, Zwicky, 2005].
- Updated NLO QCD calculations of $B \rightarrow V$ form factors at twist-3 accuracy [Bharucha, Straub, Zwicky, 2015].
- LO QCD calculations of $B \rightarrow \pi K$ form factors [Meißner, Wei Wang, 2014].
- LO QCD calculations of $B \rightarrow \pi \pi$ form factors [Hambrock, Khodjamirian, 2016].
- Semileptonic Λ_{b}-baryon form factors:
- LO QCD calculation of $\Lambda_{b} \rightarrow \Lambda$ form factors [Wang, Li, Lü, 2008].
- LO QCD calculation of $\Lambda_{b} \rightarrow p$ form factors [Khodjamirian, Mannel, Klein, Wang, 2011].

Light-cone QCD sum rules with heavy-hadron LCDA

- LO QCD calculations of $B \rightarrow M$ form factors [Khodjamirian, Offen, Mannel, 2006].
- NLO QCD calculations of $B \rightarrow \pi$ form factors at leading-twist accuracy [Wang, Shen, 2015].
- NLO QCD calculations of $B \rightarrow D$ form factors at leading-twist accuracy and LO QCD calculations of higher-twsit corrections up to the twist-six accuracy [Wang, Wei, Shen, Lü, 2017].
- NLO leading-twist jet function complicated by two distinct hard-collinear variables.
- Power-enhanced charm-quark mass effect.
- LO QCD calculations of $B \rightarrow P$ and $B \rightarrow V$ form factors at the twist-four accuracy [Gubernari, Kokulu, van Dyk, 2018].
- No definite power counting scheme for QCD calculations of the correlation functions
- Violation of the QCD equations of motion at tree level.
- Sizable theory uncertainties for phenomenological applications.
- NLO QCD calculations of $B \rightarrow \pi, K$ form factors at leading-twist accuracy and LO QCD calculations of higher-twsit corrections up to the twist-six accuracy [Lü, Shen, Wang, Wei, 2019].
- NLO QCD calculations of $\Lambda_{b} \rightarrow \Lambda$ form factors at twist-four accuracy [Wang, Shen, 2016].
- Non-trivial demonstration of the factorization-scale independence.
- Immediately confirmed by the lattice QCD calculations [Detmold, Meinel, 2016].

Light-cone SCET sum rules with B-meson LCDA

- NLO QCD calculations of $B \rightarrow M$ form factors at leading-twist accuracy [De Fazio, Feldmann, Hurth, 2006; 2008].
- NLO QCD calculations of $B \rightarrow V$ form factors at leading-twist accuracy and LO QCD calculation of higher-twsit corrections up to the twist-six accuracy [Gao, Lü, Shen, Wang, Wei, 2019].
- Rigorous perturbative matching with the evanescent-operator approach.
- First SCET computation of the $\mathrm{SU}(3)$-symmetry breaking effects.
- Three-particle higher-twist corrections compatible with the EOM constraints.
- Identify mechanisms responsible for the discrepancies between QCDF and LCSR.
- Key task: construct the sum rules for the $\mathrm{SCET}_{\mathrm{I}}$ matrix elements ξ_{a} and Ξ_{a}.

$$
F_{i}^{B \rightarrow V}(n \cdot p)=C_{i}^{(\mathrm{A} 0)}(n \cdot p) \xi_{a}(n \cdot p)+\int d \tau C_{i}^{(\mathrm{B} 1)}(\tau, n \cdot p) \Xi_{a}(\tau, n \cdot p),(a=\|, \perp)
$$

The operator-level definitions for longitudinal form factors:

$$
\begin{aligned}
& \left\langle V\left(p, \varepsilon^{*}\right)\right|\left(\bar{\xi} W_{c}\right) \gamma_{5} h_{v}\left|\bar{B}_{v}\right\rangle=-n \cdot p\left(\varepsilon^{*} \cdot v\right) \xi_{\|}(n \cdot p), \\
& \left\langle V\left(p, \varepsilon^{*}\right)\right|\left(\bar{\xi} W_{c}\right) \gamma_{5}\left(W_{c}^{\dagger} i D_{c \perp} W_{c}\right)(r n) h_{v}\left|\bar{B}_{v}\right\rangle=-n \cdot p m_{b} \varepsilon^{*} \cdot v \int_{0}^{1} d \tau e^{i \tau n \cdot p r} \Xi_{\|}(\tau, n \cdot p) .
\end{aligned}
$$

Light-cone SCET sum rules for $\xi_{\|}(n \cdot p)$

- Constructing the vacuum-to- B-meson correlation function [Gao, Lü, Shen, Wang, Wei, 2019]:

$$
\Pi_{v, \| \mid}(p, q)=\int d^{4} x e^{i p \cdot x}\langle 0| \mathrm{T}\left\{\bar{q}^{\prime}(x) \gamma_{v} q(x),\left(\bar{\xi} W_{c}\right)(0) \gamma_{5} h_{v}(0)\right\}\left|\bar{B}_{v}\right\rangle .
$$

Interpolating the collinear vector meson by a local vector current.

- Identify the leading power contributions to $\Pi_{v, \|}(p, q)$ in $\operatorname{SCET}_{\mathrm{I}}$:

$$
\begin{aligned}
\Pi_{v, \|}(p, q)= & \int d^{4} x e^{i p \cdot x}\langle 0| \mathrm{T}\left\{j_{\xi q_{s}, \| v}^{(2)}(x),\left(\bar{\xi} W_{c}\right)(0) \gamma_{5} h_{v}(0)\right\}\left|\bar{B}_{v}\right\rangle \\
& +\int d^{4} x e^{i p \cdot x} \int d^{4} y\langle 0| \mathrm{T}\left\{j_{\xi \xi, v}^{(0)}(x), i \mathscr{L}_{\xi q_{s}}^{(2)}(y),\left(\bar{\xi} W_{c}\right)(0) \gamma_{5} h_{v}(0)\right\}\left|\bar{B}_{v}\right\rangle \\
& +\int d^{4} x e^{i p \cdot x} \int d^{4} y \int d^{4} z\langle 0| \mathrm{T}\left\{j_{\xi \xi, v}^{(0)}(x), i \mathscr{L}_{\xi q_{s}}^{(1)}(y), i \mathscr{L}_{\xi m}^{(1)}(z),\left(\bar{\xi} W_{c}\right)(0) \gamma_{5} h_{v}(0)\right\}\left|\bar{B}_{v}\right\rangle, \\
& \equiv \Pi_{v, \|}^{A}(p, q)+\Pi_{v, \|}^{B}(p, q)+\Pi_{v, \|}^{C}(p, q) .
\end{aligned}
$$

Need the power-suppressed currents or SCET Lagrangians to project out the soft quark state.

- Establish soft-collinear factorization formulae for the three different pieces respectively.

Light-cone SCET sum rules for $\xi_{\|}(n \cdot p)$

- Diagrammatic representation for $\Pi_{v, \|}^{A}(p, q)$ at one loop:

(a)

(b)

(c)

(d)
- Diagrammatic representation for $\Pi_{v, \|}^{B}(p, q)$ at one loop:

- Diagrammatic representation for $\Pi_{v, \|}^{C}(p, q)$ at one loop:
- No evanescent SCET operators for the longitudinal correlation functions.

Light-cone SCET sum rules for $\xi_{\|}(n \cdot p)$

- Subleading power SCET Feynman rules for soft-collinear interactions [Beneke, Garny, Szafron, Wang, 2018]:

$$
\begin{align*}
& \underbrace{\bar{\xi}}_{q} \underbrace{p^{\prime}}_{p} \dot{\leftarrow} A_{c}^{\mu a} i g_{s} t^{a} \begin{cases}0 & \mathcal{O}\left(\lambda^{0}\right) \\
\Gamma_{\mu}\left(p^{\prime}\right) & \mathcal{O}(\lambda) \\
\frac{x_{+}}{2}\left[n_{-\mu}+\frac{p^{\prime}}{n_{+} p^{\prime}} \gamma_{\perp \mu}-\frac{n_{+\mu}}{n_{+} k} \frac{\left(p^{\prime}\right)^{2}}{n_{+} p^{\prime}}\right]+\left(p X_{\perp}\right) \Gamma_{\mu}\left(p^{\prime}\right) & \mathcal{O}\left(\lambda^{2}\right)\end{cases} \tag{A.35}
\end{align*}
$$

Here we introduce the short-hand notation

$$
X_{\mu}=\partial_{\mu}\left[(2 \pi)^{4} \delta^{(4)}\left(\sum p_{\text {in }}-\sum p_{\text {out }}\right)\right] .
$$

- Soft-collinear factorization formula for $\Pi_{v, \| \mid}(p, q)$ [Gao, Lü, Shen, Wang, Wei, 2019]:

$$
\begin{aligned}
\Pi_{v, \|}(p, q)= & \frac{\tilde{f}_{B}(\mu) m_{B}}{2} \int_{0}^{+\infty} \frac{d \omega}{\bar{n} \cdot p-\omega+i 0}\left\{\left[1+\frac{\alpha_{s} C_{F}}{4 \pi} \hat{J}_{\|,-}^{(\mathrm{A} 0)}\left(\frac{\mu^{2}}{n \cdot p \omega}, \frac{\omega}{\bar{n} \cdot p}\right)\right] \phi_{B}^{-}(\omega, \mu)\right. \\
& \left.+\left[\frac{\alpha_{S} C_{F}}{4 \pi} \hat{J}_{\|,+}^{(m)}\left(\frac{\mu^{2}}{n \cdot p \omega}, \frac{\omega}{\bar{n} \cdot p}\right)\right] \phi_{B}^{+}(\omega, \mu)\right\} \bar{n}_{v}
\end{aligned}
$$

Light-cone SCET sum rules for $\Xi_{\|}(n \cdot p)$

- Constructing the vacuum-to- B-meson correlation function [Gao, Lü, Shen, Wang, Wei, 2019]:

$$
\begin{aligned}
\widetilde{\Pi}_{v, \|}(p, q, \tau)= & \frac{n \cdot p}{2 \pi} \int d^{4} x e^{i p \cdot x} \int d^{4} y \int d r e^{-i n \cdot p \tau r} \\
& \langle 0| \mathrm{T}\left\{j_{\xi \xi, v}^{(0)}(x), i \mathscr{L}_{\xi q_{s}}^{(1)}(y),\left(\bar{\xi} W_{c}\right)(0) \gamma_{5}\left(W_{c}^{\dagger} i \not{ }_{c} \perp W_{c}\right)(r n) h_{v}(0)\right\}\left|\bar{B}_{v}\right\rangle .
\end{aligned}
$$

- SCET factorization formula for the correlation function at tree level:

$$
\begin{aligned}
\widetilde{\Pi}_{v, \|}(p, q, \tau)= & \frac{\alpha_{s} C_{F}}{4 \pi} \tilde{f}_{B}(\mu) m_{B}[(1-\tau) \theta(\tau) \theta(1-\tau)] \\
& \times \int_{0}^{\infty} \frac{d \omega^{\prime}}{\omega^{\prime}-\bar{n} \cdot p-i 0}\left[\int_{\omega^{\prime}}^{\infty} d \omega \frac{n \cdot p}{\omega} \phi_{B}^{+}(\omega, \mu)\right] \bar{n}_{v}
\end{aligned}
$$

Non-trivial τ-dependence beyond the tree level requires two-loop computations.

- SCET sum rules for $\Xi_{\|}(n \cdot p)$ at LO in α_{s} :

$$
\begin{aligned}
\Xi_{\|}(\tau, n \cdot p)= & -\frac{\alpha_{s} C_{F}}{\pi} \frac{U_{2}\left(\mu_{h 2}, \mu\right) \tilde{f}_{B}\left(\mu_{h 2}\right)}{f_{V, \|}} \frac{m_{B} m_{V}}{n \cdot p m_{b}}[(1-\tau) \theta(\tau) \theta(1-\tau)] \\
& \times \int_{0}^{\omega_{s}} d \omega^{\prime} \exp \left[-\frac{n \cdot p \omega^{\prime}-m_{V}^{2}}{n \cdot p \omega_{M}}\right] \int_{\omega^{\prime}}^{\infty} d \omega \frac{\phi_{B}^{+}(\omega, \mu)}{\omega}+\mathscr{O}\left(\alpha_{s}^{2}\right) .
\end{aligned}
$$

In agreement with the SCET factorization formula for $\Xi_{\|}(n \cdot p)$ obtained in [Beneke, Yang, 2006].

Light-cone SCET sum rules for $B \rightarrow V$ form factors

- Long-standing puzzles for 18 years [Bell, Beneke, Huber, Li, 2011]:

Discrepancies between the SCET predictions (blue solid) and the LCSR results with light vector meson DAs (black dashed-dotted) [Ball, Zwicky, 2005].

- Subleading power correction in heavy quark expansion, systematic uncertainties?

Light-cone SCET sum rules for $B \rightarrow V$ form factors

- Comparison between the SCET calculations and the B-meson LCSR predictions:

- The underlying mechanism responsible for the discrepancies:

$$
\begin{aligned}
\mathscr{R}_{1, \mathrm{LCSR}} & =1+\left.(-0.049)\right|_{C_{i}^{(\mathrm{A} 0)}}+\left.(+0.054)\right|_{C_{i}^{(\mathrm{B1})}}+\left.\left(-3.5 \times 10^{-5}\right)\right|_{3 \mathrm{PHT}} \\
\mathscr{R}_{1, \mathrm{QCDF}} & =1+\left.(-0.023)\right|_{C_{i}^{(\mathrm{A} 0)}}+\left.(+0.086)\left[1+\mathscr{O}\left(\alpha_{s}\right)\right]\right|_{C_{i}^{(\mathrm{B1})}}
\end{aligned}
$$

(a) No perturbative expansion for the A0-type $\mathrm{SCET}_{\mathrm{I}}$ form factor in QCDF.
(b) Almost a factor of two smaller prediction of the B1-type $\mathrm{SCET}_{\mathrm{I}}$ form factor in LCSR.

Light-cone SCET sum rules for $B \rightarrow V$ form factors

- The predicted vector $B \rightarrow \rho$ form factor:
- Dominant uncertainty from the model dependence of the B-meson DAs at a reference scale.
- $V_{B \rightarrow \rho}(0)=0.327 \pm 0.031$ from the light-meson LCSR as an input to determine λ_{B}.
- Extrapolation toward the large q^{2} region with the z-series expansion.

- Exclusive $\left|V_{u b}\right|$ from $B \rightarrow \rho \ell v_{\ell}$ [Gao, Lü, Shen, Wang, Wei, 2019]:

$$
\left|V_{u b}\right|=\left(\left.3.05_{-0.52}^{+0.67}\right|_{\text {th. }}-\left.{ }_{-0.20}^{+0.19}\right|_{\text {exp. }}\right) \times 10^{-3} .
$$

Confronted with $\left|V_{u b}\right|_{\mathrm{PDG}}=\left(3.70 \pm\left. 0.12\right|_{\text {th. }} \pm\left. 0.10\right|_{\text {exp. }}\right)$ from $B \rightarrow \pi \ell \nu_{\ell}$.

Theoretical wishlist

- Systematic understanding of the (high-twist) B-meson distribution amplitudes.
- Renormalization properties beyond the one-loop approximation [conformal symmetry].
- Perturbative constraints at large ω_{i} [OPE technique].
- Renormalon analysis and the renormalization-scheme dependence.
- Precision determinations of the inverse moment λ_{B}.
- QCD factorization for the subleading power corrections.
- SCET analysis for the pion-photon form factor as the first step [operator structures, symmetry constraints, etc].
- General treatment of the rapidity divergences in the (naïve)-factorization formulae.
- Rigorous factorization proof taking into account the Glauber gluons.
- Novel resummation techniques for enhanced logarithms [symmetry, geometry].
- Technical issues for future improvements.
- Factorization techniques for electromagnetic corrections.
- NNLO QCD computations for $B \rightarrow V \ell \ell$ and $B \rightarrow V \gamma$.
- QCD factorization for the radiative and electroweak penguin decays of the Λ_{b}-baryon.
- Improved understanding of the parton-hadron duality violation.
- Very promising future for QCD aspects of heavy-quark physics!

