Study on charmed-baryon production with the ALICE experiment at the LHC

Xiuxiu Jiang for the ALICE Collaboration

Institute of Particle Physics, CCNU, Wuhan, China The 5th China LHC Physics Workshop Dalian, 23. – 27.10.2019

Outline

Introduction The ALICE detector Reconstruction strategy \blacksquare Results on Λ_c^+ Summary and outlook

Motivation: Probing the Quark-Gluon Plasma

The aim of heavy-ion collisions is to study the properties of the colour-deconfined medium, Quark-Gluon Plasma(QGP).

hadronic phase and freeze-out

Heavy quarks are excellent probes to characterise QGP medium. -> Early production in hard-scattering processes at the early stage of heavy-ion collisions. -> Experience the entire evolution of the medium. -> Strongly interacting with QGP.

Heavy quarks are excellent probes to characterise QGP medium. -> Early production in hard-scattering processes at the early stage of heavy-ion collisions. -> Experience the entire evolution of the medium. -> Strongly interacting with QGP. Energy loss Key Observables: $R_{AA}(p_T) = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T}$

 \oslash $R_{AA} = 1$, if there is no medium modification

 $\Delta E_{g} > \Delta E_{q} > \Delta E_{c} > \Delta E_{b} \rightarrow R_{AA}(light hadron) < R_{AA}(D) < R_{AA}(B)?$

Thursday, Oct. 10, 2019

jiangxx@mails.ccnu.edu.cn

PbPb measurement $\langle \Delta E \rangle \propto \alpha_s C_R \hat{q} L^2$

Mechanisms: gluon radiation, elastic collisions

pp reference

Heavy quarks are excellent probes to characterise QGP medium. -> Early production in hard-scattering processes at the early stage of heavy-ion collisions. -> Experience the entire evolution of the medium. -> Strongly interacting with QGP. Energy loss Collectivity

Modification to hadron formation - Hadronisation via quark coalescence.

Heavy quarks are excellent probes to characterise QGP medium. -> Early production in hard-scattering processes at the early stage of heavy-ion collisions. -> Experience the entire evolution of the medium. -> Strongly interacting with QGP. Energy loss

Collectivity

Modification to hadron formation

 Study hadronization mechanism ✓ Set a reference for p-Pb and Pb-Pb

Thursday, Oct. 10, 2019

jiangxx@mails.ccnu.edu.cn

▶ p-Pb collisions:

 Study cold nuclear matter(CNM) effects ✓ reference for Pb-Pb measurements

Motivation: Charm-baryon measurements

Charm-baryon measurements could provide unique insights into hadronisation in the QGP.

 \checkmark \checkmark exist in the QGP

Thursday, Oct. 10, 2019

Enhancement of baryon-to-meson(Λ_c^+/D^0) ratio is predicted in coalescence models Further enhancement of baryon-to-meson ratio is expected if light di-quark states

 \checkmark Λ_c^+/D^0 is a good tool to disentangle different hadronization mechanisms.

A Large Ion Collider Experiment

Thursday, Oct. 10, 2019

Reconstruction of Λ_c^+

Invariant mass analysis of the decays $\checkmark \Lambda_c^+ \to p K^- \pi^+$ (BR=6.3%) $\checkmark \Lambda_c^+ \to p K_s^0 \to \pi^+ \pi^- p$ (BR=1.1%)

proper charge.

Thursday, Oct. 10, 2019

ML to extract Λ_c^+ in p-Pb and Pb-Pb

For the Λ_c^+ , different machine-learning algorithms were exploited in p-Pb and Pb-Pb analyses.

Training variables.

Background used for training taken from side-bands in data.

The invariant mass distribution was obtained after selecting on the ML algorithm response.

Thursday, Oct. 10, 2019

Λ_c^+ cross section in Pb-Pb collisions (2018)

50% most central Pb-Pb collisions at 5.02 TeV.

Thursday, Oct. 10, 2019

jiangxx@mails.ccnu.edu.cn

\checkmark Λ_c^+ are measured in the range 2 < $p_{\rm T}$ < 24 GeV/c for the 0-10% and 30-

Λ_{c}^{+} nuclear modification factor R_{AA} (2018)

Suppression observed for the Λ_c^+ baryon in Pb-Pb collisions.

Thursday, Oct. 10, 2019

~

$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle T_{\rm AA} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$

Λ_c^+ nuclear modification factor R_{AA} (2018)

Suppression observed for the Λ_c^+ baryon in Pb-Pb collisions. Comparison to theory favours [4] a scenario where both fragmentation and recombination are present in Pb-Pb and pp collisions, for both centrality ranges. The same conclusion for semi-central collisions see backup. \checkmark

Thursday, Oct. 10, 2019

~

 \checkmark

Baryon-to-meson ratio: Λ_c^+/D^0 (2018)

Hint to a higher Λ_c^+/D^0 ratio in Pb-Pb (0-10% and 30%-50%) collisions w.r.t. pp collisions. \checkmark -> Understanding of pp data is fundamental. Ratio is underestimated by models with fragmentation parameters derived from e+e- collision data. More precision needed to investigate a pp -> p-Pb -> Pb-Pb trend. \checkmark

Thursday, Oct. 10, 2019

Event generators PYTHIA8[7][8] \checkmark underestimate data.

The same conclusion with DIPSY[9] and HERWIG7^[10] models see backup.

The investigation under Ξ_c^0 with hadronic decay and the Σ_c work in processing.

Thursday, Oct. 10, 2019

jiangxx@mails.ccnu.edu.cn

Outlook: Ξ_c^0 production

[9] DIPSY: JHEP 08 (2011) 103 [10] HERWIG7: Eur. Phys. J. C58 (2008) 639-707

Summary

0-10% and 30-50% most central Pb-Pb collisions.

 \checkmark Different machine-learning algorithms are used for the Λ_c^+ analysis. $\checkmark \Lambda_c^+/D^0$ Compatible with p-Pb within statistical uncertainties. recombination.

Upgrate:

ALICE upgrade for Run3+4: (new ITS and TPC) \checkmark HF measurements.

Thursday, Oct. 10, 2019

jiangxx@mails.ccnu.edu.cn

- $\land \Lambda_c^+/D^0$ and $\Lambda_c^+ R_{AA}$ are measured in the range 2 < p_T < 24 GeV/c for the

 - \checkmark The Results of R_{AA} in agreement with models that foresee both fragmentation and

It will offer the opportunity to explore, with more precision, a wide p_T range of open

Thursday, Oct. 10, 2019

Motivations: Charm-baryon measurements

Enhancement of baryon-to-meson(Lc/DO) ratio is \checkmark predicted in recombination (or coalescence models)

Further enhancement of baryon-to-meson ratio is \checkmark expected if light di-quark states exist in the QGP The baryon-to-meson ratio is expected to be enhanced if charm quarks hadronise via recombination with the surrounding light

Eur. Phys. J. C (2018) 78:348

Thursday, Oct. 10, 2019

quarks in the QGP.

PRL 100, 222301 (2008)

A Large Ion Collider Experiment

High precision tracking, good vertexing capabilities and excellent particle identification

Thursday, Oct. 10, 2019

VO: trigger and centrality

a. ITS SPD (Pixel) b. ITS SDD (Drift)

Data samples (Run-2):

pp, 5.02 TeV: 980M MB events. P-Pb, 5.02 TeV: 600M MB events. $\mathbf{\overline{\mathbf{V}}}$ Pb-Pb, 5.02TeV: 100M MB events. 76M 30-50% events

89M 0-10% events

jiangxx@mails.ccnu.edu.cn

TOF: PID(time of flight);

|n| < 0.9

Heavy quarks are excellent probes to characterise QGP medium. -> Early production in hard-scattering processes at the early stage of heavy-ion collisions. -> Experience the entire evolution of the medium. -> Strongly interacting with QGP.

Energy loss

Collectivity

Azimuthal anisotropy of produced particles. collectivity and thermalisation of heavy quarks.

Key Observables: $v_2 = < cc$

Thursday, Oct. 10, 2019

jiangxx@mails.ccnu.edu.cn

• At low $p_T \rightarrow$ information on the transport properties of the medium,

$$\cos^2(\varphi - \psi_2) >$$

MLHEP python-based package

General purpose Python package for performing parallelised analysis over large datasets and Machine Learning (ML) optimisation with Scikit, Keras, and XGBoost.

Reconstructed objects(eg: Lc candidates stored in ROOT TTree format)

Pandas dataframes

Skimmed Pandas DataFrames (eg: selected on p_T , preselected on PID and/or topological cuts)

Pandas dataframes with ML decision and probability ready for final analysis

Thursday, Oct. 10, 2019

jiangxx@mails.ccnu.edu.cn

Randomised data subset

Trained model

ML optimisation:

- 1. ML sample preparation
- 2. Training/testing
- 3. ML performance studies
 - (ROC, cross validation, learning curves...)
- 4. Significance optimisation

Merging strategy: introduction Similar strategy as analyses that were statistically correlated (other Lc analysis: BDT/

standard)

Treat statistical uncertainties as fully correlated.

be the yield extraction systematic)

 Corrected yield given weight -> $1/a^2$ where $a = \Delta \sigma_{uncor.sys.}/\sigma$ ($\sigma = yield$)

So yield and uncertainties are worked out as follows:

 $\Delta \sigma_{\rm corr} = \frac{\sum w_i \Delta \sigma_i}{\sum w_i}$ $\sigma^{\text{averaged}} = \frac{\sum W_{j}\sigma_{j}}{\sum W_{j}}$

- but means not 1 analysis is favoured.

Thursday, Oct. 10, 2019

 \checkmark

- Weighted average according to the uncorrelated uncertainties (in this case, assumed to just
 - -> Ok assumption given different background shape, cut on response, etc.
- $\Delta \sigma_{nucorr} = \frac{(\Sigma w_i^2 \Delta \sigma_i^2)^{1/2}}{\Sigma w_i}$

- Note this averaging does not reduce uncertainties expect for yield extraction uncertainties

Reconstruction of Λ_c^+

- Invariant mass analysis of the decays $\checkmark \Lambda_c^+ \rightarrow p K^- \pi^+$ (BR=6.3%) $\checkmark \Lambda_c^+ \rightarrow p K_s^0 \rightarrow \pi^+ \pi^- p$ (BR=1.1%)
- Candidates build combining triplets of tracking reconstructed at Mid-rapidity ($|\eta| < 0.8$) with proper charge.
- Reduction of the combinatorial background by:
 - Kinematical and geometrical selection of displaced \checkmark decay-topology ($c\tau \sim 60 \ \mu$ m).
 - Particle identification of decay tracks. \checkmark
- Corrected for :
 - Selection efficiency using MC simulations. \checkmark
 - Feed-down subtraction using FONLL predictions. \checkmark

Thursday, Oct. 10, 2019

Two analysis methods used :

Rectangular topological cuts. Multivariate analysis exploiting **BDT**'s

ML to extract Λ_c^+ in p-Pb and Pb-Pb

For the Λ_c^+ , different machine-learning algorithms were exploited in p-pb and Pb-Pb analyses.

- The TMVA package using AdaBoost.
- New developed MLHEP (python-based fast analysis framework) using XGBoost. ->(more details in the backup)
- Topological, kinematical and PID training variables.
- Background used for training taken from side-bands in data.
- The invariant mass distribution was obtained after selecting on the ML algorithm response.
- Average results obtained by weighting the different results by the inverse of the sum in quadrature of the relative uncorrelated systematics.

Thursday, Oct. 10, 2019

Thursday, Oct. 10, 2019

[3]Phys. Lett. B793 (2019) 212-223

Despite the compatibility within uncertainties, hint of larger suppression for central collisions by ~1.5x up to $p_T = 12$ GeV/c.

Suppression observed for the Λ_c^+ baryon in Pb-Pb collisions.

Comparison to theory favours [4] a scenario where both fragmentation and recombination are present in Pb-Pb and pp collisions, for both centrality ranges.

Thursday, Oct. 10, 2019

 \checkmark

Λ_c^+ nuclear modification factor R_{AA} (2018)

[4]Catania: Eur. Phys. J. C (2018) 78: 348

Baryon-to-meson ratio: Λ_c^+/D^0 (2018)

Same behaviour w.r.t. p-Pb collisions More precision needed to investigate a pp -> p-Pb -> Pb-Pb trend. Comparison to Catania theory favours [4] a scenario where both fragmentation and recombination are present, for both centrality ranges. Good agreement with statistical hadronization model [5]. \checkmark

Thursday, Oct. 10, 2019

jiangxx@mails.ccnu.edu.cn

Hint to a higher Λ_c^+/D^0 ratio in Pb-Pb (0-10% and 30%-50%) collisions w.r.t. pp collisions.

[4]Catania: Eur. Phys. J. C (2018) 78: 348 [5]SHM: arXiv: 1901.09200

Results on E Solution First measurement of Ξ_c^0 production in pp collisions at $\sqrt{S_{NN}} = 7$ TeV[6]

$\Xi_c^0 \to e^+ \Xi^- \nu$ ($\Xi^- \to \pi^- \Lambda$) BR currently unknown, and can not measure neutrino.

Event generators PYTHIA8[7][8], DIPSY[9] and HERWIG7^[10] underestimate data.

Thursday, Oct. 10, 2019

 \checkmark

jiangxx@mails.ccnu.edu.cn

[6] Phys. Lett. B 781 (2018) 8-19 [7] PYTHIA8 CR: JHEP 08 (2015) 003 [8] PYTHIA8: Eur. Phys. J. C (2014) 74:3024 [9] DIPSY: JHEP 08 (2011) 103 [10] HERWIG7: Eur. Phys. J. C58 (2008) 639-707

