

ALICE Detector Upgrade

Zhong-Bao Yin (Central China Normal University)

第五届中国LHC物理研讨会(CLHCP2019),10月14-27日,大连

Outline

- Overview on ALICE detector upgrade programs
- Chinese involvement on ALICE detector upgrade for LS2
- (Possible) involvement on ALICE detector upgrade for LS3
- Summary and outlook

ALICE detector in RUN 1 and 2

- Designed to cope with very high charged particle multiplicities
- Excellent tracking and particle identification of charged particles over wide p_{T} range

ALICE running status

Colliding System	Year	√s _{NN} (TeV)	Integrated Luminosity	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Pb-Pb	2010,2011	2.76	~75 μb⁻¹	
	2015	5.02	~250 μb⁻¹	
	2018	5.02	~1 nb ⁻¹	² 100
Xe-Xe	2017	5.44	~0.3 μb⁻¹	80
p-Pb	2013	5.02	~15 nb ⁻¹	
	2016	5.02 8.16	~25 nb⁻¹ ~3 nb⁻¹	
рр	2000 2012	0.9 2.76	~200 μb⁻¹, ~ 100 nb⁻¹	ზ8 Nov 15 Nov 22 Nov 29 Nov
	2009-2013	7 8	~1.5 pb⁻¹, ~2.5 pb⁻¹	Pb-Pb 2018 run - 0-10%: ~ 9 x 2015 - 30-50%: ~ 4 x 2015
	2015,2017	5.02	~1.3 pb ⁻¹	– Minimum Bias: ~ 2015
	2015-2018	13	~45 pb ⁻¹	– delivered lumi. ~ 2 x 2015

Physics reach and limitations

- Measurements on a wide range of observables, from bulk particle production to specific probes, to characterize the de-confined hot and dense medium created in heavy-ion collisions at the LHC.
 - Up to now 244 papers published
- But some probes not fully exploited due to insufficient statistics or large combinatorial background.
 - Heavy flavor, quarkonium, jets, direct photons, dileptons,...

- A major detector upgrade for the LS2 to fully exploit the higher interaction rate (50 kHz Pb-Pb collisions).
- ITS3 and FoCal are proposed to upgrade the ALICE detector for LS3 to further enhance its physics capabilities.

Major detector upgrade for LS2

New Inner Tracking System (ITS2)

ITS upgrade for LS2 (ITS2)

- Inner Barrel
 - 3 Inner Layers (48x 9-chip Staves)
 - Material per layer: ~0.35% X₀

- 7-layer barrel fully equipped with dedicated Monolithic Active Pixel Sensors (MAPS): ALice Plxel DEtector (ALPIDE)
- Radial coverage: 23 400 mm
- $\eta \text{ coverage: } |\eta| \le 1.3$
- Total active area about 10 m²
- 24,000 pixel chips (12.5G pixels)
- Spatial resolution: 5 μm
- Outer Barrel
 - 2 Middle Layers (54x 8module Staves)
 - 2 Outer Layers (90x 14module Staves)
 - Material/layer: ~ 0.8% X₀

Simulated detector performance

- Pointing resolution improved by a factor of 3 and 5 in r ϕ and z direction for 0.5 GeV/c π
 - p_{T} 400 (mm) Standalone tracking efficiency (%) ALICE 100 350 ALICE Current ITS (data) Pointing Resolution 80 300 Upgraded ITS Current ITS Upgraded ITS 250 60 200 150 40 100 20 50 0 10⁻¹ 10 **10**⁻¹ 10 p_{_} (GeV/c) p_T (GeV/c) ALI-PUB-103021 ALI-PUB-103028
 - Physics goal: improve heavy-flavor physics studies through low momentum track reconstruction

Standalone tracking efficiency

improved significantly at low

The ALPIDE sensor

Pixel Sensor produced using TowerJazz 0.18µm CMOS Imaging Process

Monolithic Active Sensor Technology

- Deep Pwell allows in-pixel full CMOS
- Low-power read-out
- High granularity, low material budget
- Resistivity (>1 k Ω ·cm) p-type epitaxial layer (25 μ m)
- Reverse bias to increase the depletion zone around NWELL collection diode
- Pixel Matrix: 1024 cols x 512 rows
- Pixel pitch: 29 μm x 27 μm
- Ultra-low power: ~40 mW/cm²
- Integration time: < 10 μs
- Trigger rate: 100 kHz Pb-Pb, 1 MHz pp
- Continuous or triggered readout

IB: 50 μm thick OB: 100 μm thick

From chips to staves: IB

Inner Barrel HIC: 9x 50 μ m-thick ALPIDE chips wire-bonded to FPC

- Chips read out separately
- Clock, control, data, power lines wirebonded to aluminum FPC
- Produced at CERN with 73% yield
- 27 cm length stave

- <radius> (mm): 23, 31, 39
- Nr. staves: 12, 16, 20
- Nr. chips: 432
- Readout speed: 1.2 Gbps 10

From chips to staves: OB

Outer Barrel HIC: 14x 100µm-thick ALPIDE chips (2 rows)

- Data and control transferred through 1 master chip per row
- Chips wire-bonded to copper FPC
- Power delivered via 6 cross-cables soldered to FPC
- Produced at Bari, Liverpool, Pusan/Inha, Strasbourg and Wuhan

- HIC alignment on cold plate
- HIC-to-HIC (4 for ML and 7 for OL) interconnection soldering
- Two half staves on space frame
- Power bus installation
- Readout speed for OB: 400 MB/s

Construction installation and commissioning timeline

Commissioning on surface

Example results from commissioning

Run 001098 (15 × 10⁶ events @ 50 kHz, VBB = -3 V, THR = 100 e tuned) 10^{-5} 0 511 Layer 0 10.0 number of pixel vs hit frequency 1: 5853 10^{-6} 2: 2991 9.8 9.6 9.6 fake-hit rate (per pixel and event) 3-100: 57 14 10^{-7} 9.6 101-0.1%: 27 511 9.6 0.1%-10%: 13 9.8 10^{-8} -ayer 1 12 Threshold [DAC] 10.1 10%-99%: 6 9.6 >99%: 24 10.0 10.0 9.9 10.0 10^{-9} 9.6 9.7 99 98 9.9 99 9.9 9.9 9.8 10.1 10^{-10} 0 511 9.7 10-11 9.7 - 6 9.6 Layer 2 10-12 0 9.9 0 10² 10³ 10^{4} 9.5 9.7 9 9.8 10.0 9.9 9.9 number of masked pixels (out of 28×10^6) 0 1023 216 chips,

- Very quiet detector
- Fake-hit rate stable over time

Very good uniformityLess than 1000 dead pixels

Threshold tuning effective

/data/shifts/runs/run100774/

~ 113M pixels

Muon Forward Tracker (MFT)

Breakdown of MFT structure

- CCNU takes charge of PCB design, layout and production.
- Status: Completed

Disk production & Commissioning

• 2 disks of type 00/01 + 1 disk 02 produced

Before threshold adjustment

After threshold adjustment

Possible involvement on ALICE detector upgrade for LS3

Proposed upgrade in LS3

- ITS3: Replace the 3 inner layers with three truly cylindrical layers based on curved ultra-thin sensors
- Resolution improved further by factor of 2

Add a forward calorimeter (FoCal)

ITS3 layout

Beam pipe Inner/Outer Radius (mm)	16.0/16.5			
IB Layer Parameters	Layer 0	Layer 1	Layer 2	
Radial position (mm)	18.0	24.0	30.0	
Length (sensitive area) (mm)	300			
Pseudo-rapidity coverage	±2.5	±2.3	±2.0	
Active area (cm ²)	610	816	1016	
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280 x 94	
Number of sensors per layer	2			
Pixel size (µm²)	O (10 x 10)			

- New beam pipe:
 - "old" radius/thickness: 18.2/0.8 mm
 - new radius/thickness: 16.0/0.5 mm
- Extremely low material budget:
 - Beam pipe thickness: 500 µm (0.14% X0)
 - Sensor thickness: 20-40 μm (0.02-0.04% X0)
- Material homogeneously distributed:
 - essentially zero systematic error from material distribution

Material budget

0.8 Inner-most layer (ITS2) Silicon mean = 0.05 % 0.7 X/X₀ [%] for tracks in |η| < 1 70 0. 0 0. 0. 0. 0.0 70 0.0 0.0 0.1 0.0 10 20 30 40 50

- **Observations:**
- Silicon makes only about **15%** of total material
- Irregularities due to support/cooling and overlap

Removal of water cooling

Silicon only

– **possible** if power consumption stays below 20 mW/cm^2

Azimuthal angle [°]

- Removal circuit board (power+data)
- **possible** if integrated on chip
- Removal of mechanical support
- benefit from increased stiffness by rolling Si wafers

60

Implementation

- Air cooling
- Possible below 20 mW/cm²
- Studied in the context of ITS2
- Achievable *if* periphery outside the fiducial volume
- Wafer-scale chip
- Stitching to overcome reticle size limit
- Chip spanning half or full stave length
- Neither support structure nor electrical substrate necessary
- Thinning and bending
- Currently 50 μm (25 μm active volume)
- Below 50 μm, Si wafers become flexible, "paper-like"

Silicon Genesis: 20 µm thick wafer

Mechanics layout

- Possible layout based on air-cooling
- Sensors hold in place with low-density carbon foam
- Fixation into the experiment by surrounding support structure, as well as at both ends
- Cooling at the extremities (chip peripheries)

Wafer-scale sensor R&D

280 mm

- Starting from ALPIDE architecture
- Porting to 65 nm technology node
 - smaller pixels
 - larger wafers (300 mm instead of 200 mm)

- Basic building block of 15 mm height
 - to be repeated n times in vertical direction to obtain the sizes needed per layer

R&D starts now; TDR is foreseen for 2020.

FoCal for LS3

FoCal-E design

high granularity electromagnetic calorimeter for γ and π^0 measurements

- Studied in simulations 20 layers: W(3.5 mm \approx 1X0) + silicon sensors
- Two types: Pads (LG) and Pixels (HG)
- Pad layers provide shower profile
- **Pixel layers provide position resolution** to resolve shower overlaps
- Main challenge: Separate γ/π^0 at high energy
 - Two photon separation from π^0 decay (p_{τ} = 10 GeV/*c*, η=4.5) ~2 mm
 - Needs small Molière radius and high granularity readout
 - Si-W calorimeter with effective granularity $\approx 1 \text{mm}^2$ 25

FoCal-E detector Integration

Design of single pixel layer

Design of detector module

28cm x 8cm

- module of ≈ 18 pad layer and 2 pixel layers
- sensitive area: 27cm x 8cm
- use edge of detector for services
- designed to be stacked vertically for full detector setup
- single metal layer with cooling pipes
- full area coverage with 2 x 3 chains of 9 sensors

FoCal-H design Allows to isolate photons in FoCal-E and jet measurements

0.213

0.107

- Pb/scintillating fiber spaghetti calorimeter module as used in E864
- a lead to fiber ratio of 4.55 : 1 by volume to provide good calorimetric compensation and resolution
- a mass of about 100 kg and an active depth of approximately 8 λ_{had}
- Cu as the passive material is also under consideration to reduce the length and weight

- A nearly circular geometry approximately 1 m in radius
- 372 modules
- 1488 towers of 5cm x 5 cm

FoCal timeline

Year	Activity	
2016-2021	R&D	
2019	Letter of Intent	
2020-2021	final design	
	Technical Design Report	
2022-2026	Construction and Installation	
2022 - 2024	production, construction and test of detector modules	
2024	pre-assembly	
	calibration with test beam	
2025	installation and commissioning	
06/2026	Start of Run 4	

Summary and outlook

- Major upgrade of ALICE detector for LS2 is ongoing.
 - China involved in ITS2 and MFT
 - OB HIC production completed
 - Commissioning of ITS2 is ongoing
 - MFT PCB production completed
- ITS3 and FoCal proposed for ALICE detector upgrade during LS3
 - China involved in R&D of wafer-scale sensor for ITS3
 - Possible contributions (either pixel sensors or readout electronics) to FoCal under discussion
- Outlook: A nearly pure silicon detector for RUN5 (beyond 2030)

Increase rate capabilities (factor 50 wrt to ALICE RUN4)

- large acceptance, fast tracker
 based on wafer-scale MAPS
- 0.05% X₀/layer
- PID by TOF in Si layers
- electron and photons: preshower detector, converter

Thank you very much for your attention !

参与ALICE升级探测器研制的状况

- >参与ITS硅像素芯片设计: (1) 芯片读出结构; (2) 像素模拟前端电子学改进
- ▶ITS探测器模块建造与测试
 - ✓2017年9月份启动预生产
 - ✓ 2018年4月份启动正式生产,计划于
 2019年6月完成(生产率为2 模块/天, 共建造500个模块)

Layer and barrel assembly

- Inner barrel assembly completed
- Outer barrel layer assembly almost done
- All staves validated after installation
- Inner barrel fully functional
- Outer half-barrels being assembled avoiding overlaps of dead chips
- Maximum accepted dead area per stave is 2%

Noise and threshold performance

Threshold and noise after tuning for an OL Stave (~100M pixels) compared with a single chip test data

Threshold tuning

- Adjustment front-end parameters to equilibrate the charge threshold of all chips
- Achieving uniform response across the detector, verified on Half-Layer 0