Updated ϕ_s measurements @ LHCb

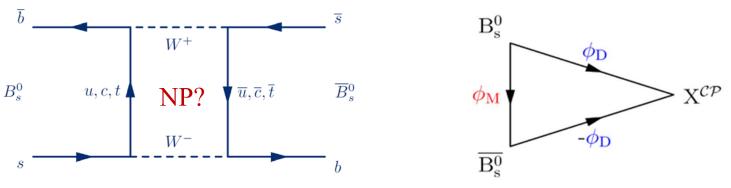
Wenhua Hu

Central China Normal University

The 5th China LHC Physics Workshop

Outline

> CPV phase ϕ_s in neutral B_s^0 system


➤ Summary

CKM matrix in SM

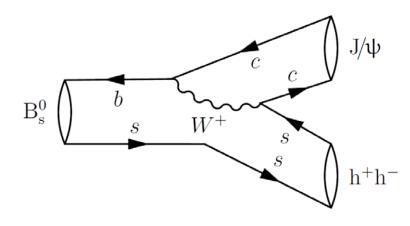
CKM matrix governs the quark mixing and gives information on the strength of the flavour-changing weak interaction

CPV in the neutral B_s^0 system

> CP violation of interference between mixing and decay

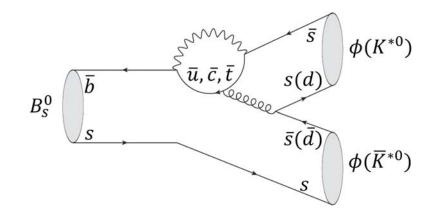
Weak phase $\phi_s = \phi_M - 2\phi_D$ Δm_s and $\Delta \Gamma_s$ can also be measured

> Why is this interesting ?


✓ Excellent test for SM prediction on ϕ_s

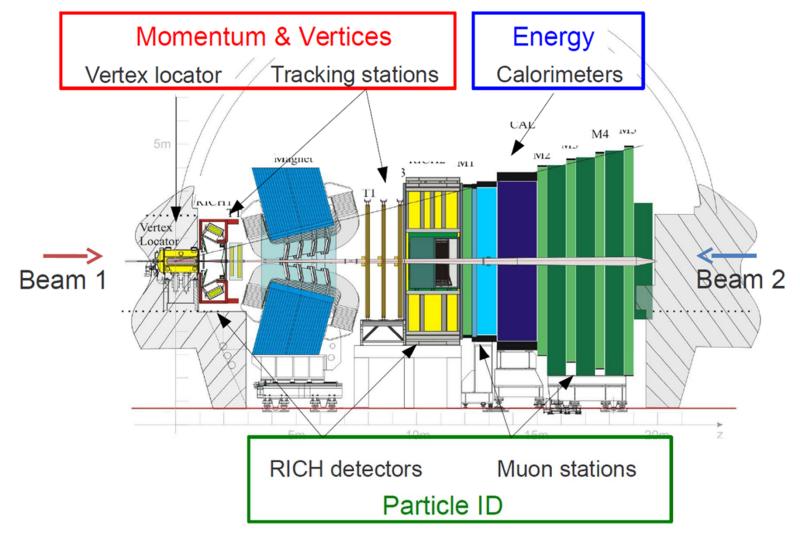
$$\phi_{s}^{SM} = -2arg\left(\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right) = -2\beta_{s} = -0.0370 \pm 0.0006 \text{ rad}$$
[CKM Fitter]

✓ Sensitive probe of NP in $B_s^0 - \bar{B}_s^0$ mixing


Decays used for measurement

 $\succ B_s^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

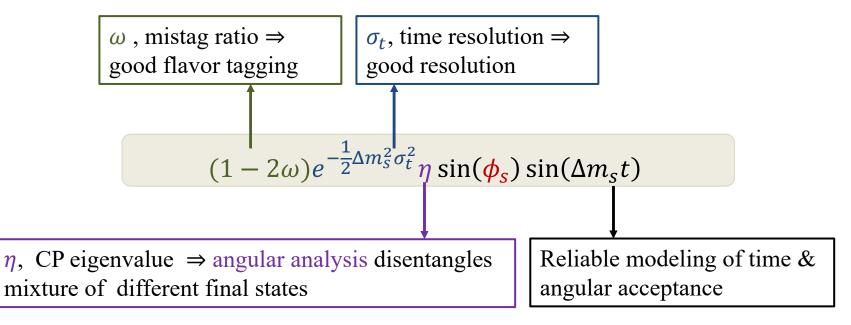
- ✓ Relatively high branch ratio $O(10^{-3})$ and $O(10^{-4})$
- ✓ Small penguin pollution
- ✓ Clean signal peak


$$\succ B_s^0 \to \phi \phi$$
 and $B_s^0 \to (K^+ \pi^-)(K^- \pi^+)$

✓ Penguin dominated decay✓ Sensitivity to NP in decay

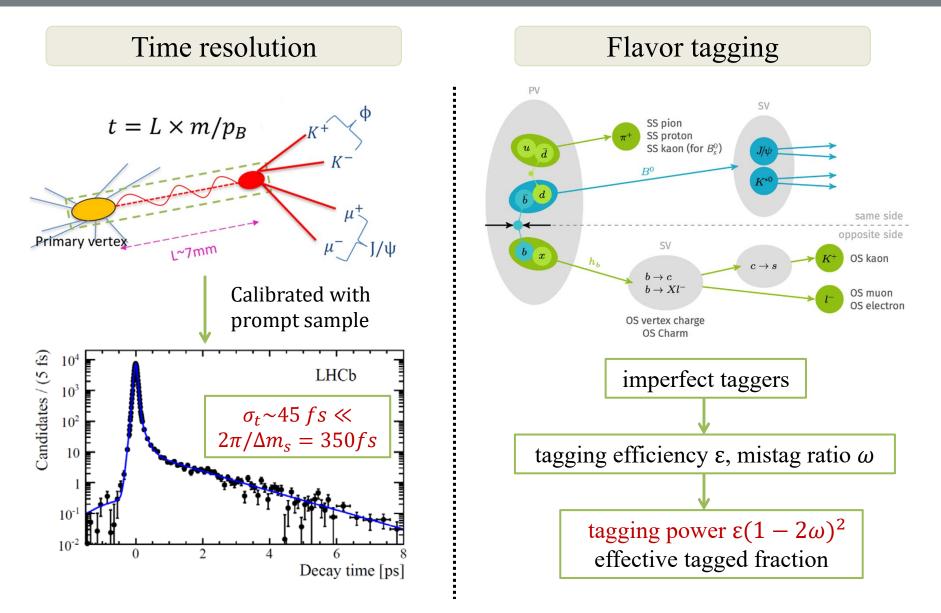
LHCb detector

> Designed for beauty and charm physics, $2.0 < \eta < 5.0$

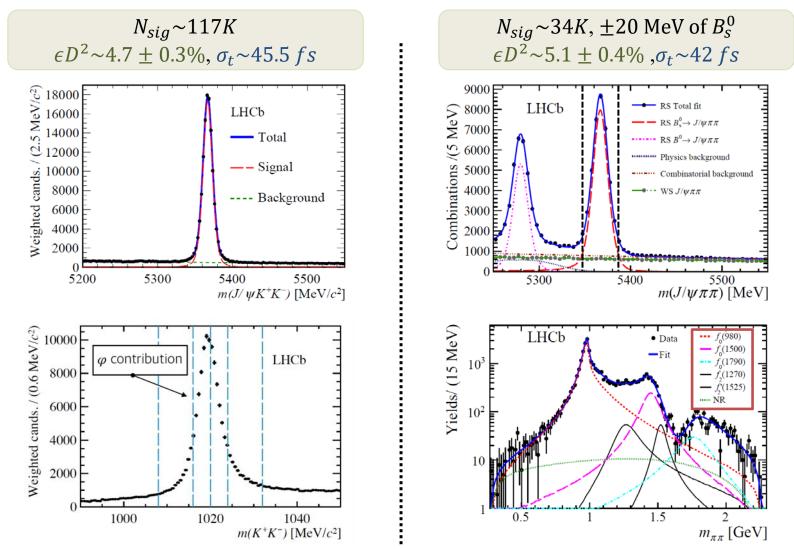


What measured experimentally?

Theoretical time-dependent CPV

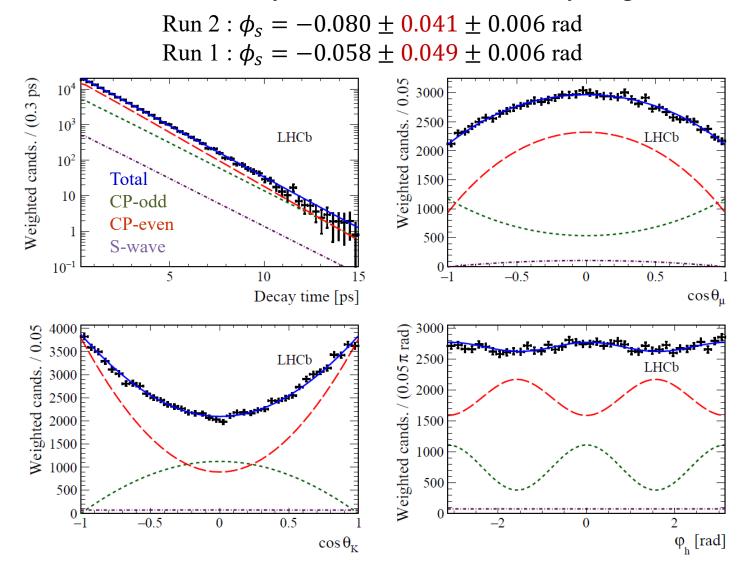

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}^0_s \to f}(t) - \Gamma_{B^0_s \to f}(t)}{\Gamma_{\bar{B}^0_s \to f}(t) + \Gamma_{B^0_s \to f}(t)} = \eta \sin(\phi_s) \sin(\Delta m_s t)$$

Experimental challenge


7

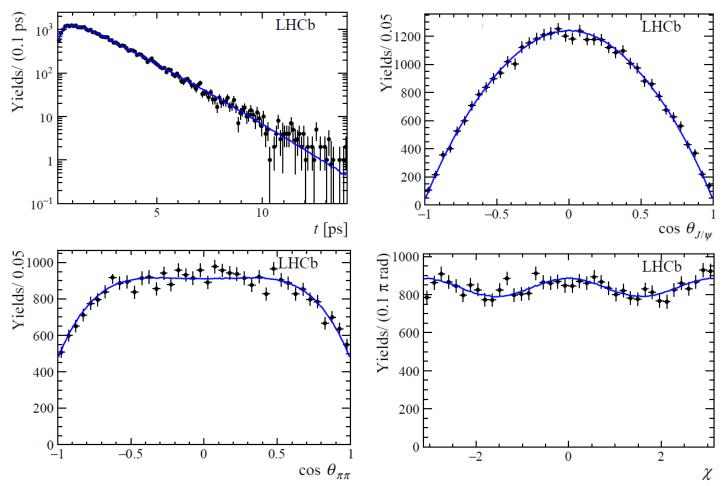
Time resolution and flavor tagging

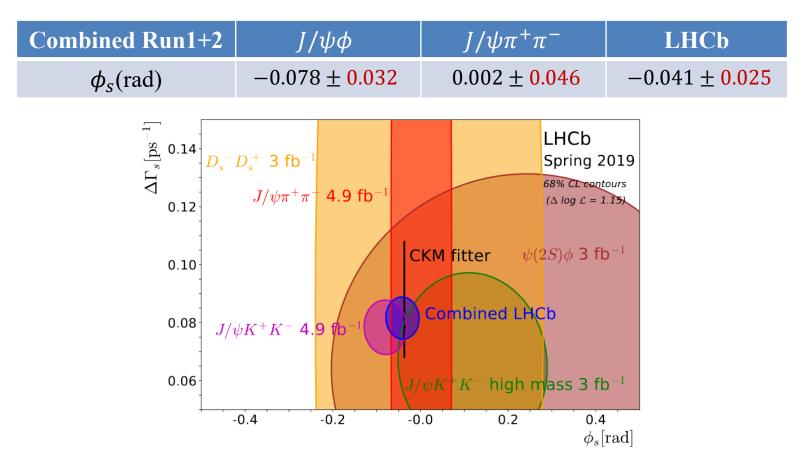
Signal yields in $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$


> Yields in 1.9 fb⁻¹(15+16) data

9

Fit results in $B_s^0 \rightarrow J/\psi K^+ K^-$ EPJC 79 (2019) 706

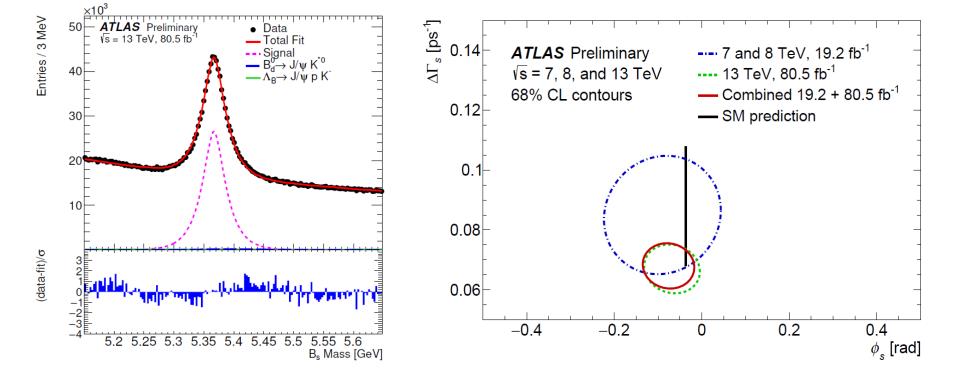

> Simultaneous fit to decay time and three helicity angles


Fit results in $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ PLB 797 (2019)

Simultaneous fit to decay time and three helicity angles

Run 2 : $\phi_s = -0.057 \pm 0.060 \pm 0.011$ rad Run 1 : $\phi_s = -0.075 \pm 0.065 \pm 0.014$ rad

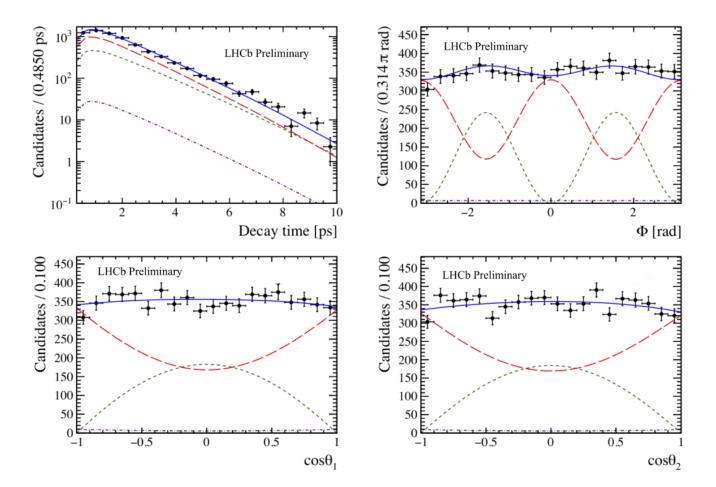
Results



Full Run 2 data of $B_s^0 \rightarrow J/\psi\phi$ analysis is ongoing, statistical uncerntainty can be decreased.

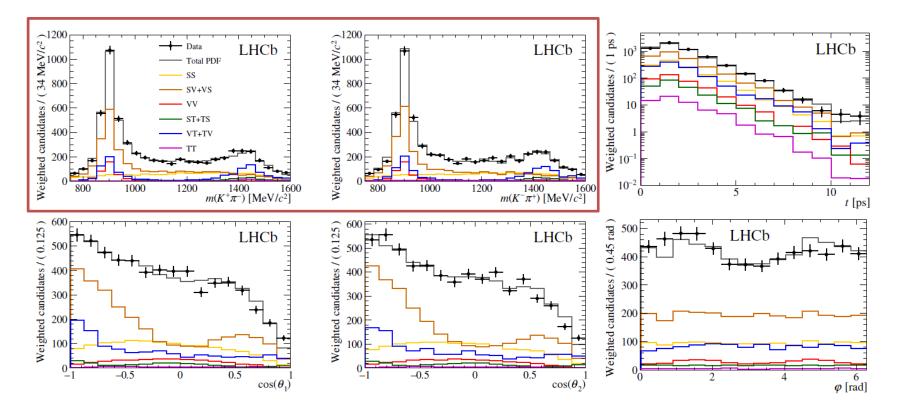
Results from ATLAS ATLAS-CONF-2019-009

► Use 80.5 fb⁻¹(15+16+17) $B_s^0 \rightarrow J/\psi\phi$ data


 $N_{sig} \sim 477K, \epsilon D^2 \sim 1.65\%$ $\sigma_t \sim 97 \rightarrow 69 fs$ Benefited from <u>IBL sub-detector</u> Run2 : $\phi_s = -0.068 \pm 0.038 \pm 0.018$ rad Combined : $\phi_s = -0.076 \pm 0.034 \pm 0.019$ rad Stats. is close to $B_s^0 \rightarrow J/\psi\phi$ results @ LHCb !

Fit results in $B_s^0 \rightarrow \phi \phi_{arXiv:1907.10003}$

➤ Use 3+1.9 fb⁻¹ (Run 1+15+16) data

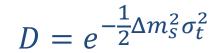

 $\phi_s^{s\bar{s}s} = -0.07 \pm 0.13 \pm 0.02$ rad Consistent with SM prediction < 0.02 rad

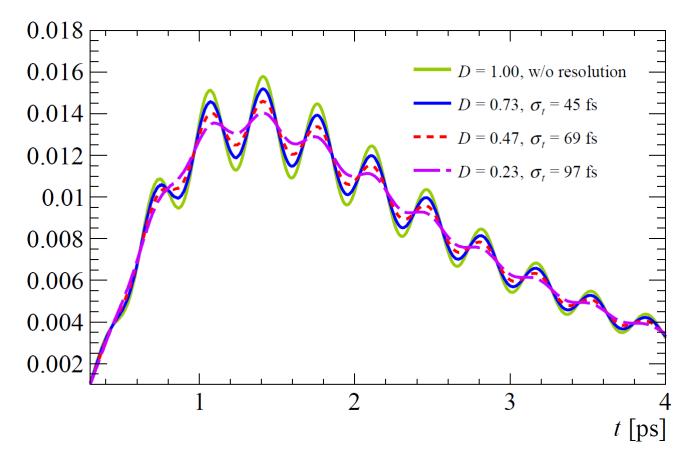
Fit results in $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ <u>JHEP 03 (2018) 140</u>

\succ Use 3 fb⁻¹(Run 1) data

Simultaneous fit to different polarization amplitude component $\phi_s^{d\bar{d}s} = -0.10 \pm 0.13 \pm 0.14$ rad

Summary

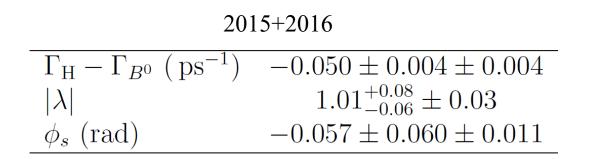

φ_s measurement is a good test for SM and sensitive probe to NP
 φ_s measurements @ LHCb


Channel	$\phi_s(rad)$	SM(rad)		
Tree dominated decays				
$B_s^0 \to J/\psi \phi$	$-0.080 \pm 0.041 \pm 0.006$			
$B_s^0 \to J/\psi \pi^+ \pi^-$	$-0.057 \pm 0.060 \pm 0.011$	-0.0370 ± 0.0006		
Combined LHCb	-0.041 ± 0.025			
Penguin dominated decays				
$B_s^0 \to \phi \phi$	$-0.07 \pm 0.13 \pm 0.02$	≤0.02		
$B^0_s \to (K^+\pi^-)(K^-\pi^+)$	$-0.10 \pm 0.13 \pm 0.14$	-		

> All of results are consistent with SM prediction

Backup

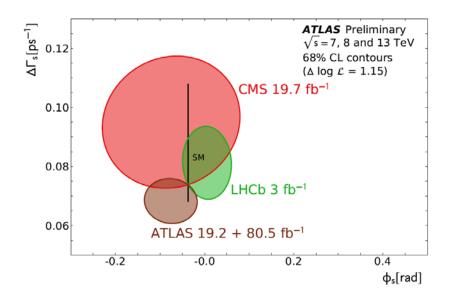
Oscillation plot with different dilution

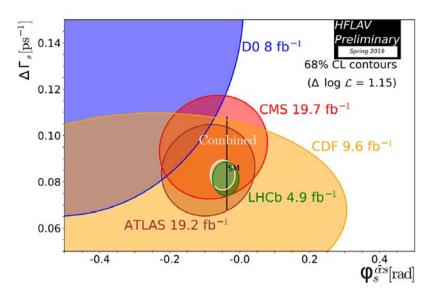


	2015+2016	R	un I+2015+2016
Parameter	Value		
$\phi_s [\operatorname{rad}]$	$-0.080 \pm 0.041 \pm 0.006$	ϕ_s =	$= -0.078 \pm 0.032 \mathrm{rad},$
$ \lambda $	$1.006 \pm 0.016 \pm 0.006$	$ \lambda =$	$= 0.991 \pm 0.013$,
$\Gamma_s - \Gamma_d [\mathrm{ps}^{-1}]$	$-0.0041 \pm 0.0024 \pm 0.0015$	$\Gamma_s - \Gamma_d =$	$= -0.0013 \pm 0.0021 \mathrm{ps}^{-1}$,
$\Delta\Gamma_s [\mathrm{ps}^{-1}]$	$0.0772 \pm 0.0077 \pm 0.0026$	$\Delta \Gamma_s$ =	$= 0.0773 \pm 0.0062 \mathrm{ps}^{-1}$,
$\Delta m_s [\mathrm{ps}^{-1}]$	$17.705 \pm 0.059 \pm 0.018$	Δm_s =	$= 17.695 \pm 0.042 \mathrm{ps}^{-1}$,
$ A_{\perp} ^2$	$0.2457 \pm 0.0040 \pm 0.0019$	$ A_{\perp} ^2 =$	$= 0.2491 \pm 0.0035$,
$ A_0 ^2$	$0.5186 \pm 0.0029 \pm 0.0024$	$ A_0 ^2 =$	$= 0.5195 \pm 0.0035$,
$\delta_{\perp} - \delta_0$	$2.64 \pm 0.13 \pm 0.10$	δ_{\perp} =	$= 2.88 \pm 0.11 \mathrm{rad},$
$\delta_{\parallel} - \delta_0$	$3.061^{+0.084}_{-0.073} \pm 0.037$	δ_{\parallel} =	$= 3.153 \pm 0.079$ rad.

- 1. Single most precise measurement of ϕ_s , $\Delta\Gamma_s$, $\Gamma_s \Gamma_d$ and Γ_s/Γ_d
- 2. Combine results with that of Run I while considering correlations between them $\phi_s = 0.078 \pm 0.032$ rad, see 2.4 StdDev from zero

Results in $B_s^0 \to J/\psi \pi^+ \pi^-$

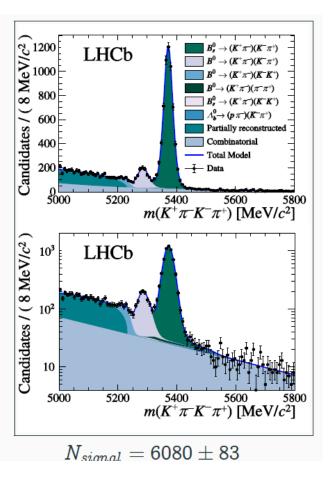

Run I+ 2015+2016


$$\begin{aligned} \Gamma_{\rm H} - \Gamma_{B^0} &= -0.050 \pm 0.004 \pm 0.004 \ {\rm ps}^{-1} \\ |\lambda| &= 0.949 \pm 0.036 \pm 0.019 \\ \phi_s &= 0.002 \pm 0.044 \pm 0.012 \ {\rm rad} \end{aligned}$$

1.Combine results with that of Run I while considering correlations between them 2.Combined ϕ_s result is slightly more precise than the Run-I $B_s^0 \rightarrow J/\psi\phi$ result : $-0.058 \pm 0.049 \pm 0.006$

Combined results

Combined results


Components in $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$

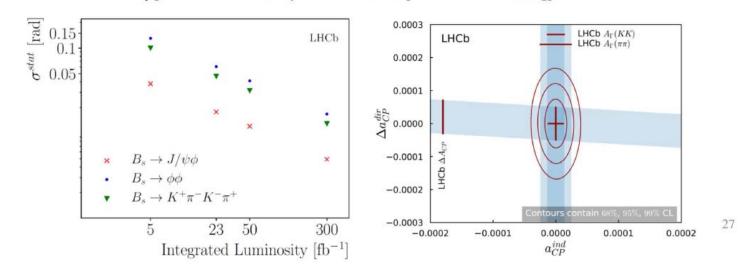
Different polarization amplitude components of final states

Scalar (S), Vector (V) and Tensor (T) contributions:

Decay	Polarization amplitudes	
$B_s^0 \to (K^+\pi^-)^*_0 (K^+\pi^-)^*_0$	SS	
$B_s^0 \to (K^+ \pi^-)_0^* \overline{K}^* (892)^0$	SV	
$B_s^0 \to K^*(892)^{\bar{0}}(K^+\pi^-)_0^*$	VS	
$B_s^0 \to (K^+\pi^-)_0^* \overline{K}_2^* (1430)^0$	ST	
$B_s^0 \to K_2^*(1430)^0 (K^- \pi^+)_0^*$	TS	
$B^{0}_{s} \rightarrow K^{*}(892)^{0}\overline{K}^{*}(892)^{0}$	VV0, VV∥, VV⊥	
$B_s^0 \to K^*(892)^0 \overline{K}_2^*(1430)^0$	VT0, VT \parallel , VT \perp	
$B_s^0 \to K_2^*(1430)^0 \overline{\overline{K}}^*(892)^0$	TV0, TV , TV \perp	
$B^0_s o K^2(1430)^0 \overline{K}^*_2(1430)^0$	TT0, TT \parallel_1 , TT \perp_1 , TT \parallel_2 , TT \perp_2	

In total 19 different polarization amplitudes!

Sensitivity projection


LHCb upgrade II

Two major upgrade at LS2 and LS4

[arXiv:1808.08865]

• Aim to take 300 fb⁻¹, improve key measurements by 10X > $\sigma_{\phi_s} \sim 4 \text{ mrad}, \sigma_{\gamma} \sim 0.4^{\circ}, \sigma_{A_{\Gamma}} \sim 10^{-5}, \sigma_{\Delta A_{CP}} \sim 3 \times 10^{-5}$

