



# Recent results of $B_c$ physics at LHCb

Yanting Fan on behalf of LHCb collaboration University of Chinese Academy of Science (CN)

The 5th China LHC Physics Workshop 24 October 2019

# $B_c$ physics



- *B<sub>c</sub>*: unique mesons consist of two different heavy flavor quarks, ideal testing for QCD models (mass, lifetime, branching fractions, etc)
- Ground state decays weakly; states under BD threshold decay to 1S states only through radiative or hadronic transitions
- First observed in CDF; Only  $B_c^+$  and  $B_c(2S)$  have been observed so far



- $\sigma(B_c^+)_{LHC}/\sigma(B_c^+)_{Tevatron} \sim \mathcal{O}(10)$
- Rich  $B_c^+$  decay modes:
  - $\overline{b} \rightarrow \overline{c}W^+(\sim 20\%)$
  - $c \rightarrow sW^+ (\sim 70\%)$
  - $c\overline{b} \rightarrow W^+ (\sim 10\%)$

### LHCb detector





## *B<sub>c</sub>* studies at LHCb



| Mass &<br>spectroscopy | $M(B_c^+ 	o J/\psi \pi^+)$                                                                                 |                                                     | [PRL 109 (2012) 232001]                                                                       |                                              |
|------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------|
|                        | $M(B_c^+ \to J/\psi D_s^+)$                                                                                |                                                     | [PRD 87 (2013) 112012]                                                                        |                                              |
|                        | $M(B_c^+ \to J/\psi p \overline{p} \pi^+)$                                                                 |                                                     | [PRL 113 (2014) 152003]                                                                       |                                              |
|                        | $M(B_c^+ \to J/\psi D^0 K^+)$                                                                              |                                                     | [PRD 95 (2017) 032005]                                                                        |                                              |
|                        | $M(B_c^*(2S)^+ \to B_c^+\pi^+\pi^-), M(B_c(2S)^+ \to B_c^+\pi^+\pi^-)$ (evidence)                          |                                                     | [PRL 122 (2019) 232001]                                                                       |                                              |
| Lifetime               | $	au(B_c^+ 	o J/\psi\mu^+  u_\mu X)$                                                                       |                                                     | [EPJC 74 (2014) 2839]                                                                         |                                              |
|                        | $	au(B_c^+ 	o J/\psi\pi^+)$                                                                                |                                                     | [PLB 742 (2015) 39]                                                                           |                                              |
| Production             | $\sigma(B_c^+) \cdot \mathcal{B}(B_c^+ \to J/\psi\pi^+)/\sigma(B^+) \cdot \mathcal{B}(B^+ \to J/\psi K^+)$ |                                                     | [PRL 109 (2012) 232001] 7TeV<br>[PRL 114 (2015) 132001] 8TeV                                  |                                              |
|                        | $\sigma(B_c^+)/\sigma(B_s^0)\cdot \mathcal{B}(B_c^+ \to B_s^0\pi^+)$                                       |                                                     | [PRL 111 (2013) 181801]                                                                       |                                              |
|                        | $\sigma(B_c^+)/\sigma(B^+)\cdot \mathcal{B}(B_c^+\to D^0K^+)$                                              |                                                     | [PRL 118 (2017) 111803]                                                                       |                                              |
| Decay                  | $B_c^+  ightarrow \psi(2S)\pi^+$                                                                           | [PRD 87 (2013) 071103(R)]<br>[PRD 92 (2015) 072007] | $B_c^+ \to J/\psi K^+$                                                                        | [JHEP 09 (2013) 075]<br>[JHEP 09 (2016) 153] |
|                        | $B_c^+  ightarrow p\overline{p}\pi^+$ (upper limit)                                                        | [PLB 759 (2016) 313]                                | $B_c^+ \to K^+ K^- \pi^+$ (upper limit)                                                       | [PRD 94 (2016) 091102(R)]                    |
|                        | $B_c^+ \rightarrow J/\psi D^{(*)} K^{*0}$                                                                  | [PRD 95 (2017) 032005]                              | $B_c^+ \to D^0 K^+$                                                                           | [PRL 118 (2017) 111803]                      |
|                        | $\mathcal{B}(B^+ \to J/\psi \tau^+ \upsilon_{\tau})/\mathcal{B}(B^+ \to J/\psi \mu^+ \upsilon_{\mu})$      | [PRL 120 (2018) 121801]                             | $B_c^+ \rightarrow D_{(s)}^{(*)+} \overline{D}^{(*)0}, D_{(s)}^{(*)+} D^{(*)0}$ (upper limit) | [NPB 930 (2018) 563]                         |



5

# Searches for new $B_c$ decays

2019/10/23

# $B_c^+$ decays into two charmed mesons



#### [NPB 930 (2018) 563]

#### **Motivation**

Measure the unitarity triangle angle  $\gamma$  in the CKM Matrix to reveal signs of new physics



#### Way to measure $\gamma$ :

- 1. CP asymmetry (The best measurement for  $B^+ \rightarrow \overline{D}{}^0 K^+$ ,  $D^0 K^+$ )
- 2. Angular distributions method
- 3. Using decays:
  - C Decay with two charm mesons:  $B_c^+ \rightarrow D_{(s)}^+ \overline{D}{}^0$ ,  $D_{(s)}^+ D^0$
  - Decay with one excited charm meson:  $B_c^+ \to D_s^{*+}\overline{D}^0$ ,  $D_s^{*+}D^0$ ,  $D_{(s)}^+D^{*0}$ ,  $D_{(s)}^+\overline{D}^{*0}$ 
    - Decay with two excited charm mesons:  $B_c^+ \rightarrow D_{(s)}^{*+}\overline{D}^{*0}$ ,  $D_{(s)}^{*+}D^{*0}$

|                                    | Prediction for the branching fraction $[10^{-6}]$ |           |           |           |  |  |
|------------------------------------|---------------------------------------------------|-----------|-----------|-----------|--|--|
| Channel                            | Ref. 9                                            | Ref. [10] | Ref. [11] | Ref. [12] |  |  |
| $B_c^+ \to D_s^+ \overline{D}{}^0$ | $2.3 \pm 0.5$                                     | 4.8       | 1.7       | 2.1       |  |  |
| $B_c^+ \rightarrow D_s^+ D^0$      | $3.0\pm0.5$                                       | 6.6       | 2.5       | 7.4       |  |  |
| $B_c^+ \to D^+ \overline{D}{}^0$   | $32\pm7$                                          | 53        | 32        | 33        |  |  |
| $B_c^+ \rightarrow D^+ D^0$        | $0.10\pm0.02$                                     | 0.32      | 0.11      | 0.32      |  |  |

 $(V_{ub})$  Color-favoured







# $B_c^+$ decays into two charmed mesons



[NPB 930 (2018) 563]

Data: full Run-I data, 3 fb<sup>-1</sup> Decay modes:

weighted sum of branching fractions

$$B_{c}^{+} \rightarrow D_{(s)}^{*+} D^{0}, D_{(s)}^{*+} \overline{D}^{0}$$
$$B_{c}^{+} \rightarrow D_{(s)}^{+} D^{*0}, D_{(s)}^{+} \overline{D}^{*0}$$

 $B_{\rm c}^+ \rightarrow D_{(s)}^+ D^0, D_{(s)}^+ \overline{D}^0$ 

 $B_{c}^{+} \rightarrow D_{(s)}^{*+} D^{*0}, D_{(s)}^{*+} \overline{D}^{*0}$ 

Charm mesons reconstructed:

$$D^{0} \rightarrow K^{-}\pi^{+}$$

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{-}\pi^{+}$$

$$D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$$

$$D^{+}_{s} \rightarrow K^{+}K^{-}\pi^{+}$$



Fits for mass spectrum, with  $D^0 \rightarrow K^- \pi^+$ 

Fits for mass spectrum, with  $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ 

# $B_c^+$ decays into two charmed mesons



#### [NPB 930 (2018) 563]

#### Result:

#### No evidence of signal for any of the decay modes The upper limits are @90% (95%) CL:

#### With two charm mesons

 $\begin{aligned} \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^+ \overline{D}^0)}{\mathcal{B}(B^+ \to D_s^+ \overline{D}^0)} &= (3.0 \pm 3.7) \times 10^{-4} \ [< 0.9 \ (1.1) \times 10^{-3}], \\ \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^+ \overline{D}^0)}{\mathcal{B}(B^+ \to D_s^+ \overline{D}^0)} &= (-3.8 \pm 2.6) \times 10^{-4} \ [< 3.7 \ (4.7) \times 10^{-4}], \\ \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D^+ \overline{D}^0)}{\mathcal{B}(B^+ \to D^+ \overline{D}^0)} &= (8.0 \pm 7.5) \times 10^{-3} \ [< 1.9 \ (2.2) \times 10^{-2}], \\ \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D^+ \overline{D}^0)}{\mathcal{B}(B^+ \to D^+ \overline{D}^0)} &= (2.9 \pm 5.3) \times 10^{-3} \ [< 1.2 \ (1.4) \times 10^{-2}]. \end{aligned}$ 

#### With two excited charm mesons

 $\begin{aligned} \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^{*+}\overline{D}^{*0})}{\mathcal{B}(B^+ \to D_s^{+}\overline{D}^{0})} &= (3.2 \pm 4.3) \times 10^{-3} \ [< 1.1 \ (1.3) \times 10^{-2}], \\ \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^{*+}D^{*0})}{\mathcal{B}(B^+ \to D_s^{+}\overline{D}^{0})} &= (7.0 \pm 9.2) \times 10^{-3} \ [< 2.0 \ (2.4) \times 10^{-2}], \\ \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D^{*+}\overline{D}^{*0})}{\mathcal{B}(B^+ \to D^{+}\overline{D}^{0})} &= (3.4 \pm 2.3) \times 10^{-1} \ [< 6.5 \ (7.3) \times 10^{-1}], \\ \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D^{*+}D^{*0})}{\mathcal{B}(B^+ \to D^{+}\overline{D}^{0})} &= (-4.1 \pm 9.1) \times 10^{-2} \ [< 1.3 \ (1.6) \times 10^{-1}]. \end{aligned}$ 

#### With one excited charm meson

$$\begin{aligned} \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^{*+}\overline{D}^0) + \mathcal{B}(B_c^+ \to D_s^+\overline{D}^{*0})}{\mathcal{B}(B^+ \to D_s^+\overline{D}^0)} &= (-0.1 \pm 1.5) \times 10^{-3} \ [< 2.8 \ (3.4) \times 10^{-3}], \\ \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^{*+}D^0) + \mathcal{B}(B_c^+ \to D_s^+D^{*0})}{\mathcal{B}(B^+ \to D_s^+\overline{D}^0)} &= (-0.3 \pm 1.9) \times 10^{-3} \ [< 3.0 \ (3.6) \times 10^{-3}], \\ \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to (D^{*+} \to D^+\pi^0, \gamma)\overline{D}^0) + \mathcal{B}(B_c^+ \to D^+\overline{D}^{*0})}{\mathcal{B}(B^+ \to D^+\overline{D}^0)} &= (-0.2 \pm 3.2) \times 10^{-2} \ [< 5.5 \ (6.6) \times 10^{-2}], \\ \frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to (D^{*+} \to D^+\pi^0, \gamma)D^0) + \mathcal{B}(B_c^+ \to D^+D^{*0})}{\mathcal{B}(B^+ \to D^+\overline{D}^0)} &= (-1.5 \pm 1.7) \times 10^{-2} \ [< 2.2 \ (2.8) \times 10^{-2}]. \end{aligned}$$

Upper limits are consistent with the theoretical expectations.



9

Test of lepton universality with semileptonic  $B_c$  decays

2019/10/23

# **BR** of semileptonic $B_c^+$ decays

#### Motivation

Test the Standard Model (SM) and search for new effects beyond the SM

#### Lepton universality:

Decays of b-quark hadrons proceed through tree-level diagrams in which a virtual W boson decays into a lepton-neutrino pair.

Same behavior for all the leptons in the SM prediction, test with semileptonic decays and leptonic decays. Ratio provided in semileptonic decays:  $R(D), R(J/\psi)$ 



 $W^{-}$   $U^{-}$   $V^{-}$   $V^{-$ 

 $\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \,\tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \,\mu^+ \nu_\mu)}$ 

Ideal for semitaunic decays:

- 1. Tree level processes in theoretical models
- 2. New physics in weak couplings with charged Higgs, leptoquarks, or vector bosons
- 3. Test for LU in loop level of EW



# **BR** of semileptonic $B_c^+$ decays

[PRL 120 (2018) 121801]



#### Data: full Run-I data, 3 fb<sup>-1</sup>

#### Simulation templates:

$$B_c^+ \to \psi(2S)\mu^+\nu_{\mu},$$
  

$$B_c^+ \to \psi(2S)\tau^+\nu_{\tau},$$
  

$$B_c^+ \to \chi_{c1}\mu^+\nu_{\mu},$$
  

$$B_c^+ \to \chi_{c2}\mu^+\nu_{\mu}$$



#### Backgrounds:

 $B_c^+ \rightarrow J/\psi H_c X$   $B \rightarrow J/\psi X$  (combinatorial) Mis-ID (the largest component)







# **BR** of semileptonic $B_c^+$ decays

#### **Result:**

First measurement of  $R(J/\psi)$ , result within  $2\sigma$  with the theoretical predictions

SM expectation ~0.25-0.28 depending on form-factors

$$f(q^2) = rac{1}{1-q^2/M_{
m pole}^2} \sum_{k=0}^K a_k z(q^2)^k$$

Ratio of branching fractions measured:

 $\mathcal{R}(J/\psi) = 0.71 \pm 0.17(stat) \pm 0.18(syst)$ 

Result higher than the SM prediction

Signal yield:  $1400 \pm 300$ Normalization:  $19140 \pm 340$ 





13

# Observation of excited $B_c^+$ state

2019/10/23

# **Observation of an excited** $B_c^+$ **state**



[PRL 122 (2019) 232001]

#### **Motivation**

Get more knowledge about  $B_c^+$  mass spectrum. The first excited state of  $B_c^+$  of has been observed, measuring with the most precise  $B_c(2S)^+$  mass to date.

First observation of  $B_c(2S)^+$  structure by ATLAS with  $B_c^+\pi^+\pi^-$  final state without distinguishing different states;  $M(B_c^+) = 6842 \pm 4 \pm 5 \text{ MeV}/c^2$ .



Abundant spectrum of  $B_c$ , the excited states still remain to be observed more



#### 2019/10/23

## **Observation of an excited** $B_c^+$ **state**



[PRL 122 (2019) 232001]

Data: Run-I and Run-II data, 8.5 fb<sup>-1</sup> About seven times larger statistics than ATLAS

Decay modes:

 $\begin{array}{l} B_{c}^{*}(2S)^{+} \to B_{c}^{*}(1S)^{+}(\to B_{c}^{+}(\to J/\psi\pi^{+})\gamma)\pi^{+}\pi^{-} \\ B_{c}(2S)^{+} \to B_{c}^{+}\pi^{+}\pi^{-} \end{array}$ 

#### **Excited states:**

Small decay widths (~keV) with cascade radiative or pionic decays to the ground state;



Reconstructed  $B_c^+$  candidates with  $J/\psi \pi^+$  decay  $B_c^+$  signal yield: 3785  $\pm$  73



# **Observation of an excited** $B_c^+$ **state**





#### Result:

 $M(B_c^*(2S)^+) = 6841.2 \pm 0.6(stat) \pm 0.1(syst) \pm 0.8(B_c^+) \text{ MeV}/c^2$ With a global (local) significance  $\sim 6.3\sigma$  (6.8 $\sigma$ )  $M(B_c(2S)^+) = 6872.1 \pm 1.3(stat) \pm 0.1(syst) \pm 0.8(B_c^+) \text{ MeV}/c^2$ With a global (local) significance  $\sim 2.2\sigma$  (3.2 $\sigma$ ) The additional source of uncertainty comes from limited knowledge of  $B_c^+$ 







Compared with CMS results  $M(B_c(2S)^+) = 6871.0 \pm 1.2(stat) \pm 0.8(syst)$  $\pm 0.8(B_c^+) \text{ MeV}/c^2$ 

The results are all within the range of the theoretical predictions.





- LHCb has made big progress on  $B_c$  studies (mass, lifetime, production and decays) with Run-I and Run-II data
- A newly decay of  $B_c$  has been searched for and studied
  - To measure the unitarity triangle angle γ with an upper limit, waiting for the future studies
- A test of lepton flavor universality with semileptonic  $B_c$  decay
  - Within 2 standard deviations agreement with the theoretical predictions
  - Higher than the SM prediction
- Observation of an excited  $B_c^+$  state
  - Previously contributed by ATLAS
  - Fascinating results from both LHCb and CMS
  - Observation of  $B_c^*(2S)^+$ , with an evidence of  $B_c(2S)^+$



;18

# Backup

2019/10/23

# Average of R(D) and R(D\*)





0.4



3 kinematic quantities in the multidimensional histogram:

$$m_{miss}^2 = (p_{B_c^+} - p_{J/\psi} - p_{\mu})^2$$

$$q^2 = (p_{B_c^+} - p_{J/\psi})^2$$

 $E_{\mu}^{*}$ : the unpaired-muon energy in the  $B_{c}^{+}$  rest frame





