Measurement on the Higgs fiducial／differential cross－section in di－photon final state with the ATLAS detector at 13 TeV

Shuo Han（IHEP）
24th Oct．2019，Dalian
5th China LHC Physics workshop（CLHCP 2019）

Outline

\checkmark Introduction of $\mathrm{H}->\mathrm{Y} \mathrm{\gamma}$
\downarrow Fiducial cross-section measurement

- Event selection
- Signal / background modeling
- S+B fit and Unfolding
- Systematic Un. And Results
\checkmark Interpretation of effective Lagrangian and charm Yukawa coupling
\checkmark Summary

Introduction of $\mathrm{H}->\mathrm{Yy}$

- SM Higgs production: ggH, VBF, VH, ttH, bbH, th
$\uparrow H->Y \gamma$ final state: loop decay that sensitive to BSM
- Small branching ratio (0.227\%), but high signal significance with 2 prompt-isolated photons, good resolution (<2\%)
- Smoothly falling background by fitting data sideband, signal is based on MC simulation and modeled by Double-sided crystal ball function

Fiducial cross section

\downarrow Model independent Higgs property measurement at particle level.

- Fiducial cross-section: cross-section measured in the detector acceptance
- Differential cross-section: measurement in the bins of Higgs kinematic or jet related observables, sensitive to enhance/weaken of couplings parameters

ATLAS-CONF-2019-029
Differential Xs. on pT_yy

Other Theory/
Experiments
Compare

Cross-section
Particle level

$$
\sigma=\frac{\nu_{\text {sig }}}{c_{\text {fid }} \cdot \mathcal{L}}
$$

Fiducial Selection In ATLAS Data

Dataset and MC Samples

\& Full Run2 Data: 139 fb-1 2015-2018 data with ATLAS

\checkmark MC Signal: ggH VBF, VH ttH bbH, ttH, tH
\uparrow MC Background:

- non-resonance $\gamma \gamma$ (~80\%) - large statistic fast-simulation
- MC; $\gamma+$ jet, jet+ү, jet+jet (~20\%) - data-driven method;
- $V_{\gamma}, V_{\gamma \gamma}, t^{\text {t }} \mathrm{y} \gamma \mathrm{MC}$ (minor contribution).

Process	Generator	Cross-section normalisation	$\sigma \times \mathrm{BR}[\mathrm{fb}]$
ggF	Powheg NNLOPS	$\mathrm{N}^{3} \mathrm{LO}(\mathrm{QCD})+\mathrm{NLO}(\mathrm{EW})$	110
VBF	Powheg-Box	approx. $\mathrm{NNLO}(\mathrm{QCD})+\mathrm{NLO}(\mathrm{EW})$	8.58
$W^{+} H$	Powheg-Box	NNLO(QCD) $+\mathrm{NLO}(\mathrm{EW})$	1.90
$W^{-} H$	Powheg-Box	$\mathrm{NNLO}(\mathrm{QCD})+\mathrm{NLO}(\mathrm{EW})$	1.21
$q \bar{q} \rightarrow Z H$	Powheg-Box	NNLO(QCD) + NLO(EW)	1.73
$g g \rightarrow Z H$	Powheg-Box	$\mathrm{NLO}(\mathrm{QCD})+\mathrm{NLO}(\mathrm{EW})$	0.28
$t \bar{t} H$	Powheg-Box	$\mathrm{NLO}(\mathrm{QCD})+\mathrm{NLO}(\mathrm{EW})$	1.15
$b \bar{b} H$	Powheg-Box	5 FS (NNLO), 4FS (NLO)	1.10
	Sherpa	Sherpa CT10	
$V \gamma \gamma$	Sherpa	Sherpa CT10	
$t \bar{t} \gamma \gamma$	MG5_AMC@NLO	Pythia 8 PDF4LHC15	

Event selection

\checkmark Trigger : single photon and di-photon trigger
\checkmark Primary vertex: di-photon vertex via NN training

- Efficiency of the NN to select the true vertex (or a vertex that is less than 0.3 mm far from the true vertex) is $\sim 76 \%$ for ggF signal events

Fiducial region

| Objects | Fiducial definition |
| :--- | :--- | :--- |
| Photons | $\|\eta\|<2.37$ (excluding $1.37<\|\eta\|<1.52), \quad \sum p_{\mathrm{T}}^{i} / p_{\mathrm{T}}^{\gamma}<0.05$ |
| Jets | anti- $k_{+}, R=0.4, \quad p_{\mathrm{T}} \geq 30 \mathrm{GeV}, \quad\|v\|<4.4$ |

Signal / background modeling

\checkmark Signal: individual DSCB fit based on MC @ 125 GeV , shift the signal model to 125.09 GeV

- Shape: linear re-weighting $\gamma \boldsymbol{Y}$ MC to the total background by fitting non- $\gamma \gamma / \gamma \gamma$ ratio
\& Function decision: spurious signal tests scan in 121-129 GeV
- GPR smoothing is minimizing the spurious signal uncertainty by 0-20\%

S+B fit and unfolding

\downarrow The number of signal events from S+B fit is bin by bin unfolded to particle level cross-section

\boldsymbol{x} : true underlying distribution (PDF)
detector response (\boldsymbol{A}): resolution (+ also efficiency and accentance)

Measured distribution (b): true distribution convoluted with detector response

Particle - Reco level (folding)

$$
\sigma_{i}=\frac{v_{i}^{\mathrm{sig}}}{C_{i} \cdot \mathcal{L}_{\mathrm{int}}} C_{i}=\frac{n_{i}^{\mathrm{det}}}{n_{i}^{\mathrm{ptcl}}}
$$

"Correction factor"

- Toy study is done to estimate the bias of each method (matrix inversion, Bayesian, IDS, SVD..), bin by bin has small statistic uncreftainty with acceptable bias

Statistic Un. And bias from each unfolding method					
method	$\sqrt{\Sigma_{i}^{\text {bins }} \sigma_{\text {stat }, i}^{2}}$	$\Sigma_{i}^{\text {bins }} b_{i}$	$\Sigma_{i}^{\text {bins }}\left\|b_{i}\right\|$	$\Sigma_{i}^{\text {bins }} \sqrt{b_{i}^{2}+\sigma_{\text {stat }, i}^{2}}$	$\sqrt{\sum_{i}^{\text {bins }}\left(b_{i}^{2}+\sigma_{\text {stat }, i}^{2}\right)}$
bayes k2	658.90	46.65	61.54	2428.92	659.20
bin by bin	627.58	45.05	58.30	2313.46	627.88
matrix	770.82	45.72	64.87	2796.33	771.13

Systematic Un.

- Correction factor: photon energy scale, photon ID/ISO, Jet energy scale/resolution

Signal extraction: mainly from spurious signal
\uparrow Theoretical uncertainties: QCD scale, PDF, signal composition, Underlying event...

- Statistic uncertainty is still dominant in most of the differential bins, and similar contribution to total uncertainty in the fiducial region.

Results

\downarrow Full Run2 (139 fb-1) fiducial cross-section (SM: $63.6 \pm 3.3 \mathrm{fb}$)

$$
\sigma_{\text {fid }}=65.2 \pm 4.5 \text { (stat.) } \pm 5.6 \text { (syst.) } \pm 0.3 \text { (theo.) fb, SM: } 63.6 \pm 3.3 \mathrm{fb}
$$

- Default SM expectation: ggH N3LO, VBF WH qqZH NNLO, ggZH ttH bbH NLO
\checkmark Compatibility is calculated comparing to SM expectation, no obvious excess found beyond SM.
- Full-Run2 publication: ATLAS-CONF-2019-029
\bullet Previous publication: ATLAS-CONF-2018-028 (79.9 fb-1), PhysRevD.98.052005 (36.1fb-1)

Results

\checkmark Various of expectations compared, more consistent with N3LO QCD calculations

Consistency to SM

Distribution	$p\left(\chi^{2}\right)$ with
	Default MC Prediction
$p_{\mathrm{T}}^{\gamma \gamma}$	44%
$\left\|y_{\gamma \gamma}\right\|$	68%
$p_{\mathrm{T}}^{j_{1}}$	77%
$N_{\text {jets }}$	96%
$\Delta \phi_{j j}$	82%
$m_{j j}$	75%

Effective Lagrangian interpretation

- Dim-6 extension of the SM Lagrangian in the SILH (Higgs Effective) and Warsaw (SMEFT) bases

$$
\mathcal{L}_{\mathrm{EFT}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i}^{(6)}
$$

- Wilson coefficients c_{i} quantify the strength of the new interactions (CP-even/odd)

Charm-Yukawa interpretation of pT

- Limit on the $\kappa_{c}=Y_{c} / Y_{c}{ }^{S M}$ modification of the charm coupling
- Indirect limit using $p_{T^{\gamma \gamma}}$, exploiting only shape information
- Assuming only modifications on $\mathrm{gg} \rightarrow \mathrm{H}$ and $\mathrm{cc} / \mathrm{cg} \rightarrow \mathrm{H}$ cross-sections
- Predictions from Radish (ggF) and Madgraph (cc/cg $\rightarrow \mathrm{H}$)

Similar precision as CMS 36fb-1 HүY and HZZ arXiv:1812.06504

[^0]
Combination of differential cross-section

\checkmark Combination is done with Full-Run2 dataset between Hyp and H-ZZ-4I ATLAS-CONF-2019-032
\downarrow Only pT_H and total cross section were calculated, using bin by bin unfolding
\downarrow Acceptance and corresponding uncertainties were included for the global cross-section
\checkmark All results consistent with SM expectation (global Xs compatibility 96\%, on pT_H 78\%)
\downarrow Stat. And Syst. Uncertainties are with the similar size. $\gamma \gamma$ background modeling have large impact

CMS 2015+2016 result

- CMS 35.9 fb-1 result: CERN-EP-2018-166 https://arxiv.org/pdf/ 1807.03825.pdf
- CMS Hүp Fiducial: $84 \pm 13 \mathrm{fb}$
- Global: $\mathbf{6 2} \pm \mathbf{1 0}$ pb, With acceptance ~0.60
\uparrow ATLAS Hүp Fiducial : $65.2 \pm 7.2 \mathrm{fb}$
- Global : 56.7 ± 6.4 pb, With acceptance ~ 0.51
- Combined with H4l: $55.4 \pm 4.3 \mathrm{pb}$
- Still match in uncertainty, will be improved with CMS full Run2 result

Summary

- Fiducial and differential cross section measurement with ATLAS full Run2 dataset ($140 \mathrm{fb}-1$), the result is consistent with SM expectation (Fiducial Xs. : $65.2 \pm 7.2 \mathrm{fb}$)
- Fiducial cross-section is more limited by systematic uncertainties
- Model independent differential fiducial cross section are mostly statistical limited, good agreement with high order QCD (N3LO) calculations
\checkmark Interpretations:
- Effective Lagrangian: SILH (more accurate than $36.1 \mathrm{fb}-1$ publication) and SMEFT (new) models, Including Dphi_jj that is sensitive to the EFT interpretation
- Charm-Yukawa coupling, Set limit on kappa_c using pT_Yy, similar precision as CMS 36.1fb-1 Hүy and HZZ.
\downarrow Combination is done between $\mathrm{H} \gamma \gamma$ and HZZ channels with full Run2 dataset,
- On pT_H and fiducial, bin by bin method, for the global cross section, consistent with SM (Global Xs. : 55.4 ± 4.3 pb, Hyp only: $56.7 \pm 6 \cdot 4 \mathrm{pb}) \operatorname{Han}(\| H E P) \mid 16$

backup

Combination of differential cross-section

\checkmark The $\mathrm{H} \gamma \gamma$ is measuring with a 2-step strategy that dividing mass-fitting and unfolding
\downarrow For combination, we do 1-step implementing bin_by_bin correction factor into the workspace.
\downarrow Cross-check is done to make sure the 2 strategies agree with each other

$$
N_{s}^{i}=\sigma_{S M, g l o b a l}^{i} \times a c c .^{i} \times B r_{\gamma \gamma} \times e f f^{i} \times L u m i
$$

One-Step: merge signal extraction and unfolding

Unfolding extraction

Shuo Han (IHEP) | 18

[^0]: Coefficient Observed 95\% CL limit Expected 95\% CL limit

