

中國科學院為能物唱湖完施 Institute of High Energy Physics Chinese Academy of Sciences

Measurement on the Higgs fiducial / differential cross-section in di-photon final state with the ATLAS detector at 13TeV

Shuo Han (IHEP) 24th Oct. 2019, Dalian 5th China LHC Physics workshop (CLHCP 2019)

Outline

Introduction of H->γγ

Fiducial cross-section measurement

- Event selection
- Signal / background modeling
- S+B fit and Unfolding
- Systematic Un. And Results
- Interpretation of effective Lagrangian and charm Yukawa coupling
- ✦ Summary

Introduction of H->yy

, swim

◆ SM Higgs production: ggH, VBF, VH, ttH, bbH, tH

H->yy final state: loop decay that sensitive to BSM

- Small branching ratio (0.227%), but high signal significance with 2 prompt-isolated photons, good resolution (<2%)</p>
- Smoothly falling background by fitting data sideband, signal is based on MC simulation and modeled by Double-sided crystal ball function

ATLAS-CONF-2019-029

150

160

 $m_{\gamma\gamma}$ [GeV]

Data

····· Background

— Fit

140

Events / GeV

Data-Background

50000

40000

30000

20000

10000

1500

1000 500

110

ATLAS Preliminary

= 13 TeV. 139 fb

 $H \rightarrow \gamma \gamma$, $m_{\mu} = 125.09 \text{ GeV}$

120

130

Fiducial cross section

Model independent Higgs property measurement at particle level.

- Fiducial cross-section: cross-section measured in the detector acceptance
- Differential cross-section: measurement in the bins of Higgs kinematic or jet related observables, sensitive to enhance/weaken of couplings parameters

Dataset and MC Samples

Full Run2 Data: 139 fb-1 2015-2018 data with ATLAS

MC Signal: ggH VBF, VH ttH bbH, ttH, tH

MC Background:

- non-resonance γγ (~80%) large statistic fast-simulation
- MC; γ +jet, jet+ γ , jet+jet (~20%) data-driven method;
- $V\gamma$, $V\gamma\gamma$, t- $t\gamma\gamma$ MC (minor contribution).

Drocogg	Conceptor	Cross-section normalisation	$\sigma \times BR[fb]$
Process	Generator		$0 \times DR[ID]$
ggF	Powheg NNLOPS	$N^{3}LO(QCD)+NLO(EW)$	110
VBF	Powheg-Box	approx. $NNLO(QCD)+NLO(EW)$	8.58
W^+H	Powheg-Box	NNLO(QCD) + NLO(EW)	1.90
$W^{-}H$	Powheg-Box	NNLO(QCD)+NLO(EW)	1.21
$q\bar{q} \rightarrow ZH$	Powheg-Box	NNLO(QCD) + NLO(EW)	1.73
$gg \to ZH$	Powheg-Box	NLO(QCD)+NLO(EW)	0.28
$t ar{t} H$	Powheg-Box	NLO(QCD) + NLO(EW)	1.15
$b\bar{b}H$	Powheg-Box	5FS (NNLO), 4 FS (NLO)	1.10
$\gamma\gamma$	Sherpa	Sherpa CT10	
$V\gamma\gamma$	Sherpa	Sherpa CT10	
$t\bar{t}\gamma\gamma$	MG5_AMC@NLC		

Shuo Han (IHE

5

Event selection

Trigger : single photon and di-photon trigger

Primary vertex: di-photon vertex via NN training

 Efficiency of the NN to select the true vertex (or a vertex that is less than 0.3mm far from the true vertex) is ~76% for ggF signal events

Shuo Han (II-

Fiducial region

Objects	Fiducial definition
Photons	$ \eta < 2.37 \text{ (excluding } 1.37 < \eta < 1.52), \sum p_{\mathrm{T}}^{i}/p_{\mathrm{T}}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30$ GeV, $ y < 4.4$
Diphoton	$N_{\gamma} \geq 2, 105 GeV < m_{\gamma\gamma} < 160 GeV, p_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 0.35, p_{\rm T}^{\gamma_2}/m_{\gamma\gamma} > 0.25$

Signal / background modeling

Signal: individual DSCB fit based on MC @ 125 GeV, shift the signal model to 125.09 GeV

Background: γγ γj jγ and jj (purity from 2x2D sideband method), very few Vγ / Vγγ

Shape: linear re-weighting γγ MC to the total background by fitting non-γγ/γγ ratio

Function decision: spurious signal tests scan in 121-129 GeV

GPR smoothing is minimizing the spurious signal uncertainty by 0-20%

S+B fit and unfolding

The number of signal events from S+B fit is bin by bin unfolded to particle level cross-section

Toy study is done to estimate the bias of each method (matrix inversion, Bayesian, IDS, SVD..), bin by bin has small statistic uncreftainty with acceptable bias

Statistic Un. And bias from each unfolding method $p_{\rm T}^{\gamma\gamma}$					
method	$\sqrt{\Sigma_i^{bins}\sigma_{stat,i}^2}$	$\Sigma_i^{bins} b_i$	$\sum_{i}^{bins} b_i $	$\Sigma_i^{bins} \sqrt{b_i^2 + \sigma_{stat,i}^2}$	$\sqrt{\Sigma_i^{bins}(b_i^2+\sigma_{stat,i}^2)}$
					bias: nominal
bayes k2	658.90	46.65	61.54	2428.92	659.20
bin by bin	627.58	45.05	58.30	2313.46	627.88
matrix	770.82	45.72	64.87	2796.33	771.13

Shuo Han (IHEP) | 8

Systematic Un.

- ✦ Correction factor: photon energy scale, photon ID/ISO, Jet energy scale/resolution
- ✦ Signal extraction: mainly from spurious signal
- ✦ Theoretical uncertainties: QCD scale, PDF, signal composition, Underlying event...
- Statistic uncertainty is still dominant in most of the differential bins, and similar contribution to total uncertainty in the fiducial region.

Results

✦ Full Run2 (139 fb-1) fiducial cross-section (SM: 63.6±3.3 fb)

 $\sigma_{\text{fid}} = 65.2 \pm 4.5 \text{ (stat.)} \pm 5.6 \text{ (syst.)} \pm 0.3 \text{ (theo.) fb}, \text{ SM: } 63.6 \pm 3.3 \text{ fb}$

Default SM expectation: ggH N3LO, VBF WH qqZH NNLO, ggZH ttH bbH NLO

✦ Compatibility is calculated comparing to SM expectation, no obvious excess found beyond SM.

✦ Full-Run2 publication: <u>ATLAS-CONF-2019-029</u>

Previous publication: <u>ATLAS-CONF-2018-028</u> (79.9 fb-1), <u>PhysRevD.98.052005</u> (36.1fb-1)

Results

Various of expectations compared, more consistent with N3LO QCD calculations

1400

3

 $\Delta \phi$

Consistency	/ to	SM
<u> </u>		

Distribution	$p(\chi^2)$ with Default MC Prediction
$p_{\mathrm{T}}^{\gamma\gamma}$	44%
$ y_{\gamma\gamma} $	68%
$ y_{\gamma\gamma} \ p_{ m T}^{j_1}$	77%
$N_{ m jets}$	96%
$\Delta \phi_{jj}$	82%
m_{jj}^{jj}	75%

Shuo Han (IHEP) | 11

Effective Lagrangian interpretation

Charm-Yukawa interpretation of pT_yy

- Limit on the $\kappa_c = Y_c/Y_c^{SM}$ modification of the charm coupling
- Indirect limit using $p_{T^{\gamma\gamma}}$, exploiting only shape information
 - Assuming only modifications on gg→H and cc/cg→H cross-sections
 - Predictions from Radish (ggF) and Madgraph (cc/cg \rightarrow H)

Coefficient	Observed 95% CL limit	Expected 95% CL limit
Kc	[-19,24]	[-15, 19]

Similar precision as CMS 36fb-1 Hyy and HZZ <u>arXiv:1812.06504</u>

Shuo Han (IF

Combination of differential cross-section

- Combination is done with Full-Run2 dataset between Hγγ and H-ZZ-4I <u>ATLAS-CONF-2019-032</u>
 - Only pT_H and total cross section were calculated, using bin by bin unfolding
 - ✦ Acceptance and corresponding uncertainties were included for the global cross-section
 - All results consistent with SM expectation (global Xs compatibility 96%, on pT_H 78%)
 - Stat. And Syst. Uncertainties are with the similar size. γγ background modeling have large impact

CMS 2015+2016 result

- CMS 35.9 fb-1 result: CERN-EP-2018-166 <u>https://arxiv.org/pdf/</u> <u>1807.03825.pdf</u>
- CMS Hγγ Fiducial: 84 ± 13 fb
 - Global: 62 ± 10 pb, With acceptance
 ~0.60
- ATLAS Hγγ Fiducial : 65.2 ± 7.2 fb
 - Global : 56.7 ± 6.4 pb, With acceptance ~0.51
 - Combined with H4I: 55.4±4.3 pb
- Still match in uncertainty, will be improved with CMS full Run2 result

- Fiducial and differential cross section measurement with ATLAS full Run2 dataset (140 fb-1), the result is consistent with SM expectation (Fiducial Xs. : 65.2±7.2 fb)
 - Fiducial cross-section is more limited by systematic uncertainties
 - Model independent differential fiducial cross section are mostly statistical limited, good agreement with high order QCD (N3LO) calculations
- Interpretations:
 - Effective Lagrangian: SILH (more accurate than <u>36.1fb-1 publication</u>) and SMEFT (new) models, Including Dphi_jj that is sensitive to the EFT interpretation
 - Charm-Yukawa coupling, Set limit on kappa_c using pT_γγ, similar precision as CMS 36.1fb-1 Hγγ and HZZ.
- \blacklozenge Combination is done between Hyy and HZZ channels with full Run2 dataset,
 - On pT_H and fiducial, bin by bin method, for the global cross section, consistent with SM (Global Xs. : 55.4±4.3 pb, Hγγ only: 56.7±6.4.9b) an (IHEP) | 16

Shuo Han (IHEP) | 17

