Measurements of Higgs boson properties with $H \rightarrow \gamma \gamma$ at CMS

Junquan Tao (IHEP/CAS, Beijing)

on behalf of the CMS collaboration

5th China LHC Physics workshop (CLHCP2019)

23-27 October 2019, Dalian University of Technology

中國科學院為能物況加完所 Institute of High Energy Physics Chinese Academy of Sciences

Overview of Higgs decaying into $\gamma\gamma$

> At the LHC, $H \rightarrow \gamma \gamma$ channel plays a key role first in the **discovery** of the Higgs boson, and then in the measurements of Higgs boson properties and also in searches for new physics

Loop-induced decay

- Interference helps probe sign of couplings to SM particles
- ✓ New physics could contribute to the loop

Small branching fraction (0.2%)

- Clean final state with two highly energetic and isolated photons
- ✓ Final state can be fully reconstructed with excellent mass resolution (1-2%)

Large backgrounds

- Continuum γγ (irreducible)
- ✓ Fakes from γ j and jj (reducible)

Search for a narrow peak on a larger falling background in mass distribution

Analysis strategy

- Signal mass reconstruction $m_{\gamma\gamma}^2 = E_{\gamma_1} E_{\gamma_2} (1 \cos \alpha)$
 - ✓ select/reconstruct two photons with precise photon energy (MVA regression)
 - ✓ Find the primary vertex of the Higgs decay (MVA BDT)
- Background suppression: photon identification BDT, inputs of diphoton BDT after looser cut (>-0.9)
- Diphoton BDT based on kinematics including mass resolution, to separate signal from background
- Event categorization according to production models, diphoton BDT or mass resolution and different S/B, to improve the analysis sensitivity

2016 dataset in HIG-16-040: 14 non-overlapping categories in total

Analysis strategy (cont.)

- Signal modeling : full parametric signal \geq model from MC simulation
 - \checkmark All the corrections (reweighting, data/MC SFs, ...) applied
 - ✓ Sum of *n*-Guassian functions (n<=5) ✓ Physical nuisances allowed to float
- Bkg modeling
 - ✓ For each event category, use **different functional forms** (sums of *exponentials*, sums of **power law** terms, *Laurent* series and Bernstein *polynomials*)
 - ✓ Background functional forms treated as discrete nuisance parameter in final minimization: "envelope" method or discrete profiling method [2015 JINST 10 P04015]
- > Signal are extracted by a simultaneous maximum-likelihood fit to the diphoton mass in all event classes

1. Higgs mass

- With 2016 legacy data, events categorized into 3 VBF and 4 Untagged (mainly ggH and all other events) categories
- Special efforts made to correct the energy scale more precisely than before
 - Improved detector calibration -> good agreement of the input variables to the energy regression correction
 - More precise (granular Run-η-R9-pT dependent) scale correction
- Photon energy scale systematics
- Additional uncertainties assigned to deal with e-γ differences : radiation damage induced non-uniformity of light collection

 $m_{
m H} =$ 125.78 ± 0.26 (0.18 (stat) ± 0.18 (syst)) GeV

U.21% precision								
Source	Contribution [GeV]						
Electron energy scale and resolution corrections	0.10							
Residual p_T dependence of the photon energy scale	0.11							
Modelling of the material budget	0.03							
Non-uniformity of the light collection	0.11							
Statistical uncertainty	0.18							
Total uncertainty	0.26	5						

1. Higgs mass (cont.)

- ➤ Combination with the H→ZZ* → 4I mass measurement with the 2016 data set, then with the Run 1 data set
- Between both channels, luminosity uncertainty is fully correlated
- Uncertainties in the e/γ energy scale between both channels are treated as uncorrelated
 - ✓ Pseudo-experiments show that, treating them as uncorrelated would not bias the best-fit mн value, but would lead to an underestimation of the total uncertainty on mн by at most 5%.
 - To be conservative, increase the total uncertainty by 5% for 2016 combination and Run 1 + 2016 combination.

Best result up to now

 \succ Signal strength modifier (μ) is defined as the ratio between the **measured** signal cross section and the SM expectation

> Overall signal strength

 $\widehat{\mu} = 1.18^{+0.17}_{-0.14} = 1.18^{+0.12}_{-0.11} (\text{stat})^{+0.09}_{-0.07} (\text{syst})^{+0.07}_{-0.06} (\text{theo})$

2 d In

theoretical uncertainties and photon identification BDT score

Production mechanism signal strengths are SM-consistent

2. Signal strength (cont.)

- Signal strength modifier
 µggH,ttH VS µVBF,VH : to
 separates fermionic
 production modes (ggH+ttH)
 from vector boson
 production modes (VBF+VH)
- A two-dimensional likelihood scan
- Result consistent with the SM expectation

2. Signal strength of ttH

ttH measurements

- \checkmark Largest coupling to the top quark
- ✓ Very challenging : complicated experimental signature; low cross section : σ_{ttH} = 507 fb (NLO QCD + NLO EW, 13TeV), compare with SM cross section : σ_{tt} = 831,800 fb (NNLO QCD)
- First direct ttH observation with various decay channels combined (2016 + Run1 data sets)
- Measured ttH→γγ with 2017 datasets and combined with 2016 datasets
- 2017 analysis use BDT to reject most non-ttH and non-resonant background
 - ✓ 2 leptonic event classes : lepton multiplicity and leptonic BDT score
 - ✓ 3 hadronic event classes : hadronic BDT score

3. Couplings

" κ framework" : measurements of coupling modifiers to vector bosons and fermions (κ_{γ} , κ_{f}) and to photons and gluons (κ_{γ} , κ_{g})

4. Fiducial cross-sections

4. Fiducial cross-sections (cont.)

Differential fiducial cross sections

- ✓ **Single** differential XS with pT($\gamma\gamma$), N(jets), $|y^{\gamma\gamma}|, |\cos\theta^*|, ...$
- ✓ **Double** differential XS with pT($\gamma\gamma$) and N(jets)
- ✓ Differential cross section for different regions

5. Simplified template cross sections

- Higgs Simplified Template Cross Section (STXS) :
 - ✓ Maximize the measurement precision and the sensitivity to BSM contributions
 - ✓ Cross section split by production mode
 - ✓ Cross section divided in exclusive regions of kinematic phase space (bins)

Stage 0 STXS : compatible with SM

- $\checkmark~$ Higgs boson rapidity to be less than 2.5
- ✓ Ratios are measured for the ggH, VBF, ttH, and VH production processes
- ✓ VH split into WH leptonic, ZH leptonic, and VH hadronic

5. Stage 1 STXS

Inclusive σ/σ_{SM}

With 2016 + 2017 data sets

 \Rightarrow split to improve S/B 77.4 fb⁻¹ (13 TeV) CMS Preliminary ³⁵⁰⁰⁰ H→γγ All categories Events / 6 S/(S+B) weighted Jata S+B fit B component ±1 σ ±2 σ 1000 B component subtracted m_{γγ} (GeV)

5. Stage 1 STXS (cont.)

- Some signal bins are merged to reduce statistical uncertainty
- Combined fit with seven parameters of interest
- Having the most granular possible set whilst maintaining an uncertainty of less than 100% of the SM prediction
- qqH: same as stage 0

6 ggH + 1 VBF parameters

Summary

- > Higgs boson properties, measured in diphoton final states ($H \rightarrow \gamma \gamma$) at CMS, have been presented
 - ✓ Measured mass with 2016 legacy data and gave the best precision result (0.12%) of Higgs boson mass when combined with 2016 H→ZZ* → 4l and Run-1 results
 - ✓ Precision of measured overall signal strength is about 14% with 2016 data set
 - ✓ Improved precision in Higgs measurements with 77.4 fb⁻¹ instead of 35.9 fb⁻¹ :
 - \rightarrow ttH signal strength improved from ~40% precision to ~30% with 4.1 σ observed
 - → VBF signal strength improved from ~60% precision to ~40%
 - ➔ Results of STXS stage1

> All results are compatible with the Standard Model

- ➤ All results are being updated with full Run-2 dataset → Stay Tuned !!
 - ✓ ttH + CP measurements with full Run-2 : will release the results soon
 - ✓ Updated **STXS** analysis : aim to release a PAS for Moriond
 - ✓ Signal strength, differential cross sections, mass, ...

Thanks for your attention!

Backup slides

Higgs production

- Significant increase in production cross section from 8 TeV (Run1 2012) to 13 TeV (Run2)
 - ✓ σ_{13TeV}/σ_{8TeV} of Higgs: ggH ~2.3, VBF ~2.4, VH
 ~2.0 and ttH ~3.9
 - ✓ background increased by a factor of ~2
- $\succ H \rightarrow \gamma \gamma \text{ gives access to all}$ the production modes

ECAL response changes over Run 1 and Run 2

Significant response changes (crystal+photodetector) due to LHC irradiation Monitoring of each channel via a dedicated laser system, is performed every 40 minutes and corrections are provided within 48 hours.

These are crucial to maintain stable ECAL energy scale and resolution over time

Some detailed Analysis strategy

$H \rightarrow \gamma \gamma$ categorization by productions

ttH (leptopic + hadronic)	VH leptonic	VH Hadronic	VH MET
• (sub-)lead-photon pT/m _{yy} >1/2(1/4), at least one lepton $(\ell = \mu, e)$ away from Z peak	• $W \to \ell v \text{ or } Z \to \ell \ell$	 W → jj or W → jj (sub-)lead-photon 	• $W \to \ell v \text{ or } W \to v v$
 at least two jets with pT>25GeV, η <2.5 at least one of the jet is b-tag 	• (sub-)lead-photon $pT/m_{\chi\chi} > 1/2(1/4)$ • at least one lepton ($\ell = \mu, e$) away	pT/m _{yy} > 1/2(1/4) ● at least two jets ● p ₋ > 40 GeV/ p <2.4	 MET > 85 GeV ΔΦ(yy,MET) > 2.4
 At least 3 jets + 1 b-jet Train an MVA on MC ttH vs MC diphoton using the input 	from Z peak ΔR(γ,μ (e)) > 0.5 (0.2) diphoton MVA > 0.5 	 p₁ > 40 GeV, <2.4, cosθ[*] < 0.5 60<m<sub>ji < 120 GeV</m<sub> 	 ● diphoton MVA > 0.79
variables : N_{iets} , lead b-tag , sub-lead b-tag, lead p_T	 MET > 45 GEV (WH leptonic) 		

Changed later to complicated BDT for ttH discovery

VBF

- Require at least 2 jets with $p_{T1} > 30 \text{GeV}$, $p_{T2} > 20 \text{ GeV}$, $|\eta| < 4.7$, $m_{ii} > 250 \text{ GeV}$
- A diphoton pair with (sub)lead $p_T/m_{vv} > 1/2(1/4)$

- Construct a BDT to identify VBF dijet-like events using:
 - p_T/m_{yy} of both photons, p_T of both jets, m_{ii} , $\Delta \eta_{ii}$, centrality variable, $\Delta \Phi_{jj}$, $\gamma \gamma$, $\Delta R\gamma j$, $\Delta \Phi_{jj}$
- Final VBF classification combines dijet BDT with BDT estimating diphoton quality (see next slide)
- 3 VBF categories are then defined by sensitivity (VBF tag 0-1-2)

Remaining events fall into the untagged category : 4 untagged events in 2016

Signal efficiency and fraction with 2016 data set

JHEP 11 (2018) 185

$m_{\gamma\gamma}$: Photon energy

Events / 0.5

80

20

 $m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$

- Photons energy is computed from the sum of the energy of the ECAL
 reconstructed hits, calibrated and corrected for several detector effects
 - correction for **response changes** in time, S_i(t)
 - single-channel intercalibration (C_i)
 absolute scale adjustment 2013 JINST 8 P09009

Energy and its uncertainty corrected for local and global shower containment with a multivariate regression technique targeting E_{true}/E_{reco}

➢ For energy scale vs time and resolution calibration,
 Z→ee peak used as reference

JHEP 11 (2018) 185

 R_9 and η dependent scaling and MC smearing

$m_{\gamma\gamma}$: primary vertex identification

 $m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$

Vertex assignment correct within 1 cm -> has negligible impact on mass resolution

Multivariate approach (BDT) for vertex identification

- Vertex ID BDT: kinematic correlations and track distribution imbalance $\sum_{i} |\vec{p_{T}^{i}}|^{2}$, $-\sum_{i} (\vec{p}_{T}^{i} \cdot \frac{\vec{p}_{T}^{\gamma\gamma}}{|\vec{p}_{T}^{\gamma\gamma}|})$ and $(|\sum_{i} \vec{p}_{T}^{i}| - p_{T}^{\gamma\gamma})/(|\sum_{i} \vec{p}_{T}^{i}| + p_{T}^{\gamma\gamma})$
- if conversions are present conversion information
 - the number of conversions,
 - the pull $|z_{vtx} z_e|/\sigma_z$ between the longitudinal position of the reconstructed vertex, z_{vtx} , and the longitudinal position of the vertex estimated using conversion track(s), z_e , where the variable σ_z denotes the uncertainty on z_e .
- A second MVA estimates probability of correct vertex choice, used for di-photon classification using BDT

> Method validated on Z $\rightarrow \mu\mu$ events where vertex found after removing muon tracks and γ +j for converted γ

Photon identification

MVA based photon ID classifier (BDT) to discriminate between prompt and fake photons

- Shower shape variables: σiηiη ,coviηiφ, E2x2/E5x5, R9, η-width, φ-width, Preshower σRR
- Isolation variables: PF Photon ISO, PF Charged ISO - wrt selected vertex and to the worst (largest isolation sum) vertex
- ρ, ηSC, Eraw

> Inputs and output of the MVA are validated on data and MC in $Z \rightarrow ee$ and $Z \rightarrow \mu\mu\gamma$ events

>Two photon BDT scores are used as inputs of diphoton BDT after a looser direct cut at > -0.9

Diphoton BDT

Multivariate discriminator (BDT) used to separate diphoton pairs with signal-like kinematics, high photon ID scores and good mass resolution from background

- pT/Mγγ, η, cos(Δφ), Photon ID MVA score of the two photons
- Per event relative mass resolutions (under correct and incorrect vertex hypothesis), vertex probability estimate
- ➤ Validation of Diphoton MVA is done on Z→ee events, with the electrons taken as photons
- Diphoton BDT used for the untagged event (ggH dominant) categorization, one of the inputs of VBF combined BDT, and direct cut on diphoton BDT score for ttH/VH tagged events

Higher BDT score gives better mass-resolution diphoton events

2016 H $\rightarrow \gamma\gamma$: ttH

CMS

14 ⊢ H→γγ

110

120

130

140

150

12

m_μ=125.4 GeV, μ=1.18

Events / GeV

Objects

- Jets:
 - ▲ ak4PFCHS; pT>25 GeV; |η| <2.4
- Bjets:
 - ▲ PF CSV v2 (medium WP)
- Muons:
 - ▲ p_T>20 GeV; |η|<2.4; "tight muon"; minilso<0.06</p>
- Electrons:
 - p_T>20 GeV; |η|<2.5; 1.442<|η|
 <1.566; loose EGM ID

leptonic $t\bar{t} \rightarrow bl\nu_l\bar{b}q\bar{q}' t\bar{t} \rightarrow bl\nu_l\bar{b}l'\nu_{l'}$

- Selection
 - (sub)leading photon
 p_T/M_{γγ}>0.5(.25)
 - At least 2 jets with
 ΔR(j, γ or I) >0.4
 - At least one b-tagged jet
 - At least 1 lepton
 ΔR(I,γ)>0.35
 - ▲ For electron: |M_{ev}-M_Z|>5 GeV
 - ▲ diphoton mva > 0.107

• Preselection:

- ▲ at least 3 jets
- at least 1 loose b-jet
- 2-d optimization of diphoton MVA and ttH MVA
 - diphoton MVA > 0.577
 - ▲ ttH MVA > 0.75

35.9 fb⁻¹ (13 TeV)

ttH Hadronic

Data

±1σ

±2 σ

S+B fit

B component

B component subtracted

160

170

m_{γγ} (GeV)

$$t\bar{t}\rightarrow bq\bar{q}^{'}\bar{b}q\bar{q}^{'}$$

Cut-based strategy replaced with mva to improve μ_{ttH} sensitivity

JHEP 11 (2018) 185

$2016 H \rightarrow \gamma \gamma : VH_{M}$

m_{γγ} (GeV)

m_{γγ} (GeV)

2016 H $\rightarrow \gamma \gamma$: VBF Tag

- > Preselection: Two jets with $pT_{j1}>40GeV$, $pT_{j2}>30GeV$, $|\eta|<4.7$, $m_{jj}>250GeV$
- Main Structure: two parts, the Dijet BDT & Combined BDT
- Dijet BDT: separates VBF dijet from BG (incl. gluon fusion) using dijet kinematics
- Combined BDT: separates signal/BG diphotons using diphoton BDT, dijet BDT and scaled diphoton pT
- 3 VBF-tagged categories using the combined MVA with boundary optimisation: cuts on combined score are simultaneously optimized for max significance across all categories

ttH observation

Largest coupling to the top quark

Very challenging

Complicated experimental signature Low cross section : $\sigma_{ttH} = 507$ fb (NLO QCD + NLO EW, 13TeV) Compare with SM cross section : $\sigma_{tt} = 831,800$ fb (NNLO QCD)

ttH $\rightarrow \gamma\gamma$ measurement with 2017 data

CMS Preliminary

45⊢

30F

25

15

Data sidebands

0.8 - 0.6 - 0.4 - 0.2

0

- > Very rare process but excellent mass resolution, very low background
- Use BDT to reject most non-ttH and non-resonant background Events/0.05
 - fully leptonic: $t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}\ell\nu_\ell\ell'\nu_{\ell'}$;
 - semi-leptonic: $t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}q\bar{q}\ell\nu_\ell$;
 - fully hadronic: $t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}qq'\bar{q}\bar{q}'$.

2 leptonic event classes

- TTH Leptonic 0: events with at least two leptons and a BDT score greater than 0.5, or exactly one lepton and BDT score greater than 0.6;
- TTH Leptonic 1: events with exactly one lepton and a BDT score greater than 0.4 10E and smaller than 0.6.

3 hadronic event classes

- TTH Hadronic 0: events with a BDT score greater than 0.56;
- TTH Hadronic 1: events with a BDT score between 0.48 and 0.56;
- TTH Hadronic 2: events with a BDT score between 0.38 and 0.48.

ttH $\rightarrow \gamma \gamma$ with 2017 data

CMS-PAS-HIG-18-018

- Photon variables:
 - the $p_T/m_{\gamma\gamma}$ of the two photons;
 - the η of the photons;
 - the azimuthal angle φ of the photons;
 - the photon identification BDT score of the photons;
 - the outcome of the pixel seed veto for the two photons
 - the $p_{\rm T}/m_{\gamma\gamma}$ of the diphoton;
 - the rapidity of the diphoton;
- jet variables:
 - the number of jets;
 - the transverse momentum of the four highest p_{T} jets;

Input variables of hadronic BDT

- the η of the four highest $p_{\rm T}$ jets;
- the sum $p_{\rm T}$ of all the reconstructed jets;
- b-tagged jet variables:
 - the value of the b-discriminant of the three jets with the highest score of the b-discriminant;
 - the value of the b-discriminant of the four highest *p*_T jets;
- the missing transverse momentum p_T^{miss} .

• photon variables:

- the *p*_T/m_{γγ} of the two photons; the *p*_T is scaled to the diphoton mass to keep the BDT blind to the diphoton invariant mass;
- the η of the two photons;
- the photon identification BDT scores of the two photons;
- the azimuthal angle difference between the two photons $\Delta \phi(\gamma \gamma)$;
- the outcome of the pixel seed veto for the two photons. The veto requires the absence of a track seed in the pixel detector matching the photon direction, reducing the background due to events where an electron is misidentified as a photon;
- jet variables:

Input variables of leptonic BDT

- the number of jets;
 the transverse momentum of the three highest *p*_T jets;
- the η of the three highest $p_{\rm T}$ jets;

• b-tagged jet variables:

- the number of b-tagged jets;
- the value of the b-discriminant of the two jets with the highest score of the b-discriminant;
- leptonic variables:
 - the transverse momentum of the highest *p*_T lepton;
 - the η of the lepton of the highest $p_{\rm T}$ lepton;
- the missing transverse momentum p_T^{miss} .

ttH $\rightarrow \gamma \gamma$ with 2017 data (cont.)

Event estegaries	SM 125 GeV Higgs boson expected signal											Bkg		
Event categories	Total	ttH	bbH	tHq	tHW	ggH	VBF	WH lep	ZH lep	WH had	ZH had	σ_{eff}	FWHM	(GeV^{-1})
ttH Hadronic 0	2.4	86.7 %	<0.05 %	5.0 %	2.8 %	2.6 %	0.1 %	0.1 %	0.1 %	0.7 %	1.8 %	1.66	1.61	0.2
ttH Hadronic 1	3.3	79.2 %	0.2 %	5.6 %	2.4 %	7.5 %	0.2 %	0.4 %	0.1 %	1.0 %	3.3 %	1.79	1.62	1.1
ttH Hadronic 2	5.2	62.9 %	0.2 %	5.9 %	1.9 %	18.4 %	1.3 %	0.6 %	0.4 %	3.2 %	5.1 %	2.02	1.72	3.8
ttH Leptonic 0	2.7	88.5 %	$<\!0.05~\%$	5.2 %	4.4 %	0.2 %	$<\!0.05~\%$	1.2 %	0.2 %	<0.05 %	0.1 %	1.79	1.66	0.3
ttH Leptonic 1	1.2	87.6 %	$<\!0.05~\%$	5.5 %	1.8 %	2.0 %	0.2 %	1.9 %	0.8 %	<0.05 %	0.2 %	1.88	1.59	0.3
Total	14.8	77.2 %	0.1 %	5.5 %	2.6 %	8.7 %	0.5 %	0.7 %	0.3 %	1.5 %	2.8 %	1.84	1.65 ³⁴	5.6

Basic idea of STXS

Direct measurements (Run 1 m, CP-odd OO, ...)

- ✓ Maximum sensitivity
- ✓ Theory model, uncertainties and pre dictions are part of the measurement. If these change
 → redo measurement

Differential fiducial measurements

- ✓ Best model and theory independence
- ✓ Less sensitive: measurements use simple cuts and avoid selections with a strong production mode/signal dependence

➤STXS == compromise

- ✓ Use "most sensitive analysis" to separate between Higgs production modes and against backgrounds
- ✓ Extrapolate (unfold) to coarse kinematic regions for each Higgs production mode
- ✓ Good sensitivity while keeping reduced theory dependence