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Overview of Higgs decaying into 
 At the LHC, H→  channel plays a key role first in the discovery 

of the Higgs boson, and then in the measurements of Higgs 
boson properties and also in searches for new physics

 Loop-induced decay
 Interference helps probe sign of couplings 

to SM particles
 New physics could contribute to the loop

 Small branching fraction (0.2%)
 Clean final state with two highly energetic 

and isolated photons 
 Final state can be fully reconstructed with 

excellent mass resolution (1-2%)

 Large backgrounds 
 Continuum  (irreducible)
 Fakes from j and jj (reducible)

Search for a narrow peak on a larger 
falling background in mass distribution
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 Signal mass reconstruction
 select/reconstruct two photons with precise 

photon energy (MVA regression)
 Find the primary vertex of the Higgs decay 

(MVA BDT)

 Background suppression: photon identification 
BDT, inputs of diphoton BDT after looser cut (>-0.9)

 Diphoton BDT based on kinematics including mass 
resolution, to separate signal from background

Analysis strategy

 Event categorization according to production 
models, diphoton BDT or mass resolution and
different S/B,  to improve the analysis sensitivity 

2016 dataset in HIG-16-040: 14 non-overlapping categories in total
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 Signal modeling : full parametric signal 
model from MC simulation

 Bkg modeling

 Signal are extracted by a simultaneous 
maximum-likelihood fit to the diphoton mass 
in all event classes

Analysis strategy (cont.)

 For each event category, use different 
functional forms (sums of exponentials, sums 
of power law terms, Laurent series and 
Bernstein polynomials)
 Background functional forms treated as 
discrete nuisance parameter in final 
minimization: “envelope” method or discrete 
profiling method [2015 JINST 10 P04015]
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 All the corrections (reweighting, 
data/MC SFs, …) applied  
 Sum of n-Guassian functions (n<=5)
 Physical nuisances allowed to float
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 Photon energy scale systematics

 Additional uncertainties assigned to deal 
with e- differences : radiation damage 
induced non-uniformity of light collection

1.  Higgs mass
With 2016 legacy data, events categorized 

into 3 VBF and 4 Untagged (mainly ggH
and all other events) categories

 Special efforts made to correct the energy 
scale more precisely than before
 Improved detector calibration -> good 

agreement of the input variables to the 
energy regression correction

 More precise (granular Run--R9-pT 
dependent) scale correction

0.21% precision

CMS-PAS-HIG-19-004 
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1.  Higgs mass (cont.)
 Combination with the HZZ*  4l 

mass measurement with the 2016 
data set, then with the Run 1 data set

Between both channels, luminosity 
uncertainty is fully correlated

Uncertainties in the e/ energy scale 
between both channels are treated as 
uncorrelated
 Pseudo-experiments show that, treating them 

as uncorrelated would not bias the best-fit mH

value, but would lead to an underestimation 
of the total uncertainty on mH by at most 5%.

 To be conservative, increase the total 
uncertainty by 5% for 2016 combination and 
Run 1 + 2016 combination.

0.12%

0.14%

CMS-PAS-HIG-19-004 
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 Signal strength modifier (μ) 
is defined as the ratio 
between the measured 
signal cross section and 
the SM expectation

 Overall signal strength

theoretical uncertainties and photon 
identification BDT score

 Production mechanism signal

strengths are SM-consistent

Overall 

signal 

strength Signal strength 

per process 

JHEP 11 (2018) 185

2. Signal strength

~14% precision
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2. Signal strength (cont.)

 Signal strength modifier 
ggH,ttH vs VBF,VH : to 
separates fermionic 
production modes (ggH+ttH) 
from vector boson 
production modes (VBF+VH)

 A two-dimensional
likelihood scan

 Result consistent with the 
SM expectation
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2. Signal strength of ttH
 ttH measurements

 Largest coupling to the top quark
 Very challenging : complicated 

experimental signature; low cross 
section : σttH = 507 fb (NLO QCD + NLO 
EW, 13TeV), compare with SM cross 
section : σtt = 831,800 fb (NNLO QCD)

 First direct ttH observation with 
various decay channels combined 
(2016 + Run1 data sets)

 Measured ttH with 2017 datasets 
and combined with 2016 datasets

 2017 analysis use BDT to reject most 
non-ttH and non-resonant background

 2 leptonic event classes : lepton 
multiplicity and leptonic BDT score

 3 hadronic event classes :  hadronic 
BDT score

Signal strength 

per event class

 Combined (2016+2017) 

significance: 4.1 obs. 

(2.7σ exp.)

 Dominant uncertainties
 Theoretical: QCD scale 

uncertainties, PDF, S, 
Br(H→𝛾𝛾)

 Experimental: photon ID, 
JES/JER, b-discriminant

~30% precision
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3. Couplings
“ framework” : measurements of coupling modifiers to vector bosons and fermions (V, f) 
and to photons and gluons (, g)

Compatible with SM

JHEP 11 (2018) 185
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4. Fiducial cross-sections 
 Fiducial cross section :

 Fiducial volume to minimize model 

dependency 

 3 untagged event categories based 

on expected mass resolution

pT
 : most precise measurement 

and the largest number of bins
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Fiducial volume:
pT1(2)/m> 1/3 (1/4)
|1(2)|<2.5 excluding 
1.4442<|1(2)|<1.566
Isogen1,2 < 10 GeV (R=0.3)

 Differential fiducial cross sections 
 Single differential XS with pT(), N(jets), 

|y|,|cos*|,... compared to different 
simulation programs (histograms)

JHEP01(2019)183
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4. Fiducial cross-sections (cont.) 

Jet:
PT>30GeV
R(, jet)>0.4
||< 4.7 when two jets
||< 2.5 when 1 hadronic 
jet
||< 2.4 for b-tagged jets

Leptons:
PT>20GeV, ||< 2.4 and 
not in the gap for electrons
R(, l)>0.35

Measurements are found 
in agreement with the 
theoretical predictions

On top of these, other cuts 
are imposed depending on 
the observable under study

Fiducial volume:
pT1(2)/m> 1/3 (1/4)
|1(2)|<2.5 excluding 
1.4442<|1(2)|<1.566
Isogen1,2 < 10 GeV (R=0.3)

 Differential fiducial cross sections 
 Single differential XS with pT(), N(jets), 

|y|,|cos*|,...
 Double differential XS with pT() and N(jets)
 Differential cross section for different regions 

of phase space

JHEP01(2019)183



5. Simplified template cross sections
 Higgs Simplified Template Cross Section (STXS) : 

 Maximize the measurement precision and the 
sensitivity to BSM contributions

 Cross section split by production mode
 Cross section divided in exclusive regions of kinematic 

phase space (bins)

 Stage 0 STXS : compatible with SM
 Higgs boson rapidity to be less than 2.5
 Ratios are measured for the ggH, VBF, ttH, and VH 

production processes
 VH split into WH leptonic, ZH leptonic, and VH hadronic JHEP 11 (2018) 185
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5. Stage 1 STXS

10 ggH + 3 VBF parameters

CMS-PAS-HIG-18-029
 With 2016 + 2017 data sets

 Target ggH & VBF production modes

 VBF and ggH categories 
 split to match stage1 bins 
 split to improve S/B

Inclusive σ/σSM

ggH =                      VBF =

Better than earlier results of 35.9 fb-1 data:

14

Jet multiplicity 
and Higgs PT

pTHjj and leading jet pT



5. Stage 1 STXS (cont.)

6 ggH + 1 VBF parameters

CMS-PAS-HIG-18-029 Some signal bins are 
merged to reduce 
statistical uncertainty

 Combined fit with seven 
parameters of interest

 Having the most 
granular possible set 
whilst maintaining an 
uncertainty of less than 
100% of the SM 
prediction

 qqH: same as stage 0
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Summary

 Higgs boson properties, measured in diphoton final states (H→𝛾𝛾 ) at CMS, have been 
presented
 Measured mass with 2016 legacy data and gave the best precision result (0.12%) of Higgs boson mass 

when combined with 2016 HZZ*  4l and Run-1 results
 Precision of measured overall signal strength is about 14% with 2016 data set 
 Improved precision in Higgs measurements with 77.4fb-1 instead of 35.9fb-1 : 

 ttH signal strength improved from ~40% precision to ~30% with 4.1 observed
 VBF signal strength improved from ~60% precision to ~40%
 Results of STXS stage1

 All results are compatible with the Standard Model

 All results are being updated with full Run-2 dataset → Stay Tuned !!
 ttH + CP measurements with full Run-2 : will release the results soon 
 Updated STXS analysis : aim to release a PAS for Moriond
 Signal strength, differential cross sections, mass, …
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Thanks for your attention!
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Backup slides
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Higgs production

 Significant increase in 
production cross section 
from 8 TeV (Run1 2012) 
to 13 TeV (Run2)
 σ13TeV/σ8TeV of Higgs:  

ggH ~2.3, VBF ~2.4, VH 
~2.0 and ttH ~3.9

 background increased 
by a factor of ~2

 H→ gives access to all 
the production modes
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Significant response changes (crystal+photodetector) due to LHC irradiation
Monitoring of each channel via a dedicated laser system, is performed every 40
minutes and corrections are provided within 48 hours.
These are crucial to maintain stable ECAL energy scale and resolution over time
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Some detailed Analysis strategy

Data & MC

Trigger

Photon reconstruction and energy calibration

Preselection

Vertex identification and probability estimation

Photon identification

Diphoton BDT

Selections of event categories : exclusive-/untagged

Statistical analysis with “combine”

Results

Signal/bkg modeling

Analysis flow

JHEP 11 (2018) 185

Photon Energy 
scale and 
resolution 
validated with 
Zee

BDT for vertex 
identification : 
validated on 
Z→μμ and +j

Photon ID BDT 
to discriminate 
prompt/fake 
photons

Diphoton BDT 
to discriminate 
signal and bkg

Common tools for different H→ measurements
21
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H categorization by productions 

Changed later to complicated BDT for ttH discovery

Remaining events fall into the untagged category : 4 untagged events in 2016 
JHEP 11 (2018) 185
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Signal efficiency and fraction with 2016 data set
JHEP 11 (2018) 185
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 Photons energy is computed from the 
sum of the energy of the ECAL 
reconstructed hits, calibrated and 
corrected for several detector effects

• correction for response changes in time, Si(t)
• single-channel intercalibration (Ci)
• absolute scale adjustment 

R9 and η dependent scaling 

and MC smearing

m : Photon energy

2013 JINST 8 P09009

 Energy and its uncertainty corrected for local and 
global shower containment with a multivariate 
regression technique targeting Etrue/Ereco

 For energy scale vs time and resolution calibration, 
Z→ee peak used as reference

 Corrected energies and resolutions used in analysis

JHEP 11 (2018) 185
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 Vertex assignment correct within 1 cm → has
negligible impact on mass resolution

Multivariate approach (BDT) for vertex identification

 A second MVA estimates probability of correct vertex
choice, used for di-photon classification using BDT

Method validated on Z→μμ events where vertex found 
after removing muon tracks and +j for converted 

kinematic correlations and track distribution imbalance

conversion information

m : primary vertex identification

Averaged 
efficiency is 
about 81%

Validation of vertex id algorithm 
on Z→μμ events omitting μ tracks

Comparison of the true vertex id eff and the 
average estimated vertex probability as a 
function of the number of primary vertices

JHEP 11 (2018) 185
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 Inputs and output of the MVA are validated on data and MC in Z→ee and Z→μμ events

Two photon BDT scores  are used as inputs of diphoton BDT after a looser direct cut at > -0.9 

Photon  identification

Photon identification BDT score of the 
lower-scoring photon of diphoton pairs

Photon identification BDT score 
validation : Z→ee data and MC

 MVA based photon ID classifier 
(BDT) to discriminate between 
prompt and fake photons

JHEP 11 (2018) 185
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Diphoton BDT
Multivariate discriminator (BDT) used to separate 
diphoton pairs with signal-like kinematics, high photon ID 
scores and good mass resolution from background

 Validation of Diphoton MVA is done on Z→ee events, 
with the electrons taken as photons

 Diphoton BDT used for the untagged event (ggH
dominant) categorization, one of the inputs of VBF 
combined BDT, and direct cut on diphoton BDT score for 
ttH/VH tagged events

Higher BDT score gives better mass-resolution diphoton events

rejected

JHEP 11 (2018) 185
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2016 H→ : ttH
Objects leptonic

Cut-based strategy 

replaced with mva

to improve μttH

sensitivity

hadronic

JHEP 11 (2018) 185
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2016 H→ : VH

3 VH leptonic categories

Diphoton MVA cuts were tuned 

hadronic category

MET category

JHEP 11 (2018) 185
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2016 H→ : VBF Tag
 Preselection: Two jets with pTj1>40GeV, 

pTj2 >30GeV, |η|<4.7, mjj>250GeV

 Main Structure: two parts, the Dijet BDT

& Combined BDT

 Dijet BDT: separates VBF dijet from BG 

(incl. gluon fusion) using dijet kinematics

 Combined BDT: separates signal/BG

diphotons using diphoton BDT, dijet BDT

and scaled diphoton pT

 3 VBF-tagged categories using the 
combined MVA with boundary 

optimisation: cuts on combined score are 

simultaneously optimized for max 

significance across all categories

JHEP 11 (2018) 185
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ttH observation

CMS Run1 + Run2 (2016 dataset)

 Largest coupling to the top quark

 Very challenging

Complicated experimental signature

Low cross section : σttH = 507 fb (NLO QCD + NLO EW, 13TeV)

Compare with SM cross section : σtt = 831,800 fb (NNLO QCD)

 First direct observation of the production mode with 

various decay channels combined:

Phys. Rev. Lett. 120, 231801 (2018) 31



ttH→𝛾𝛾 measurement with 2017 data

Very rare process but excellent mass 

resolution, very low background

Use BDT to reject most non-ttH and 

non-resonant background

2 leptonic event classes

3 hadronic event classes
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ttH→𝛾𝛾 with 2017 data

Input variables of leptonic BDT

Input variables of hadronic BDT

CMS-PAS-HIG-18-018
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ttH→𝛾𝛾 with 2017 data (cont.)

CMS-PAS-HIG-18-018

34



 Direct measurements (Run 1 m, CP-odd OO, ...) 
 Maximum sensitivity 
 Theory model, uncertainties and pre dictions are part of the measurement. If these change 

→ redo measurement 

Differential fiducial measurements 
Best model and theory independence 
 Less sensitive: measurements use simple cuts and avoid selections with a strong production 

mode/signal dependence 

STXS == compromise 
Use “most sensitive analysis" to separate between Higgs production modes and against 

backgrounds 
 Extrapolate (unfold) to coarse kinematic regions for each Higgs production mode 
Good sensitivity while keeping reduced theory dependence

Basic idea of STXS
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