Multiplicity dependent inclusive jet production with ALICE

Yalei Tan for ALICE Collaboration

Central China Normal University, Wuhan, China

The 5th CLHCP2019 (Dalian), Oct23 to 27th ,2019

Why the study of jets at the LHC?

- Jet cross section provides constraints to pQCD calculations
- Investigate the splitting function of parton in vacuum: close to original collimation information.

Why the study of jets at the LHC?

- Jet cross section provides constraints to pQCD calculations
- Investigate the splitting function of parton in vacuum: close to original collimation information.
- Study jet quenching effect in nucleus-nucleus collision.

- High particle multiplicity pp events can have similar particle multiplicity as in pA/AA collisions
 - What happens for jet production in high particle multiplicity environment: quenching? enhancement?

Jet measurements in ALICE

- Event selection and multiplicity categorization: SPD, V0
- Track and jet reconstruction: ITS, TPC, EMCal

Measurement of charged jets in pp and Pb-Pb collisions at $\sqrt{s}_{NN} = 5.02$ TeV

Cross section in pp collisions

ALICE, arXiv:1905.02536

- Charged jets are reconstructed using different resolution parameters and down to very low $p_{\rm T}$ ($p_{\rm T,jet} > 5 \, {\rm GeV}/c$)
- Jet cross section is well described by POWHEG+PYTHIA8 predictions (NLO pQCD+parton shower+hadronization) within systematic uncertainties

Spectrum in Pb-Pb collisions

- Charged jet spectra in different centrality intervals are measured in Pb-Pb collisions with different cone radii
- Centrality ordered jet production found in Pb-Pb collisions after T_{AA} scaling

7

Jet nuclear modification factor R_{AA}

• Strong suppression is observed in central Pb-Pb collisions

- Less suppression for peripheral events
- R_{AA} of different radius jets agree with each other within uncertainties

8

Jet R_{AA} comparison

- Full jets and charged jets R_{AA} are consistent
- R_{AA} in different collision energies are similar
 - Compensating effect of flattening of the spectrum and stronger jet suppression in higher collision energy

 $R_{AA} = \frac{dN_{jets}^{AA}/dp_T d\eta}{< T_{AA} > d\sigma_{jets}^{PP}/dp_T d\eta}$

Charged jets measurements in pp collisions at $\sqrt{s} = 13 \text{ TeV}$

Charged jet cross section in pp collisions

- Charged jet cross sections measured for R = 0.2 and R = 0.4
- Cross sections are compared with different MC calculations, POWHEG + PYTHIA8 (NLO pQCD+parton shower+hadronization) agrees with data

Multiplicity dependent jet production

- Charged jet cross sections in different multiplicity bins for R = 0.2 and R = 0.4 in pp collisions
- More jets are produced in high multiplicity events compared to low multiplicity bins

Multiplicity dependence of jet production ratio

- Ratio of charged jet cross sections in different multiplicity intervals with respect to Min. bias one in pp collision
- Cross section ratio has week p_T and resolution parameter *R* dependence in different multiplicity bins

Jet cross section ratio: R = 0.2/R = (0.4 or 0.6)

- Jet cross section ratio measurements reflect jet collimation information
- Different jet cross section ratio is slightly increasing with jet p_{T} , and consistent with Monte Carlo simulation
- Similar jet cross section ratios for different \sqrt{s} and collision mode

Multiplicity dependent jet cross section ratio

- Jet cross section ratio between R=0.2 and R=0.4 in different multiplicity intervals
- No strong multiplicity dependence in ratio of the jet spectra

Cross section ratio from data and simulation

- Jet cross section ratio from data shows no centrality dependence while simulation indicates centrality ordering
 - Inclusive jet cross section can be reproduced by POWHEG calculation but not the centrality dependent cross section ratio in pp collisions

→ Multiplicity differences or UE subtraction effect?

- Charged jet production studied in pp and Pb-Pb collisions
- Inclusive jet cross sections in pp collisions can be reproduced by POWHEG+PYTHIA8
- Nuclear modification factor (R_{AA}) has been measured
 - Centrality dependent jet suppression is observed in Pb-Pb collisions
 - Full jets and charged jets R_{AA} are consistent
- Multiplicity dependent jet cross section is studied
 - Higher(lower) jet yield in high(low) multiplicity events compared to inclusive one
 - Jet production ratios have no significant jet $p_{\rm T}$ and resolution parameter dependence
- Jet cross section ratio between R = 0.2/R = 0.4 (or 0.6) have been measured
 - No strong dependence for different collision systems or collision energies
 - Weak dependence on multiplicities from data, while multiplicity ordering in simulation

Thanks for your attention!

Backup

ALICE

Multiplicity estimator in pp collisions

• Selecting different multiplicity events using forward detector (V0) to avoid auto correlations between event activities and jet measurements

ALI-PERF-131164

2

4

V0M amplitude / (V0M amplitude)

12

10