

### SEARCHES FOR NEW PHENOMENA IN LEPTONIC FINAL STATES USING THE ATLAS DETECTOR

Dr. Marc Bret Cano On behalf of the ATLAS collaboration

cLHCP 2019 23-27 October Dalian, China

### Performance of the LHC & ATLAS detector



- A total of 139  $fb^{-1}$  collected during the 2015-18 period
- Currently in shutdown until 2021

# Outline

- Search in high-mass same-flavor dilepton final state (arXiv 1903.06248, 139 fb<sup>-1</sup>)
- Search for a right-handed gauge boson decaying into a highmomentum heavy neutrino and a charged lepton (arXiv 1904.12679, 80  $fb^{-1}$ )
- Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum (<u>ATLAS-</u> <u>CONF-2018-017</u>, 80 fb<sup>-1</sup>)

# **Dilepton Search: Analysis Strategy**



First ATLAS full Run-2 result

#### AIM

 Search for "bumps" in the dielectron and dimuon invariant mass spectra

#### **EVENT SELECTION**

Look for events with exactly two electrons or two muons and an invariant mass below 6000 GeV



CERN-EP-2019-030 arXiv 1903.06248

#### BACKGROUND ESTIMATION

- Largely dominated by the Drell-Yan process
- Fit parametric function to data to model background (new with respect to previous versions of the analysis)
- Leads to spurious signal uncertainties, but those have a small impact on the final result

#### SIGNAL MODELLING

- Generic signal modelling using a convolution of Breitt-Wigner and a Gaussian to parametrize for various pole mass and width values
- Results interpreted in terms of Sequential Standard Model (SSM) and Heavy Vector Triplet (HVT)

### **Dilepton Search: Results**



- Largest excess found at 264 GeV for 0-width with a local significance of 2.3o for the combination of the dielectron and dimuon channels (assuming lepton flavor universality)
- No significant deviations for larger widths

### Dilepton Search: 2-D width & mass scan



# **Dilepton Search: Exclusion Limits**



- Model-independent calculated for various width scenarios
- Limits can be re-interpreted for specific models
- Results re-interpreted in terms of Heavy Vector Triplet (HVT) couplings

|                | Lower limits on $m_{Z'}$ [TeV] |        |          |        |            |        |  |  |
|----------------|--------------------------------|--------|----------|--------|------------|--------|--|--|
| Model          | ee                             |        | $\mu\mu$ |        | $\ell\ell$ |        |  |  |
|                | obs                            | $\exp$ | obs      | $\exp$ | obs        | $\exp$ |  |  |
| $Z'_{\psi}$    | 4.1                            | 4.3    | 4.0      | 4.0    | 4.5        | 4.5    |  |  |
| $Z'_{\chi}$    | 4.6                            | 4.6    | 4.2      | 4.2    | 4.8        | 4.8    |  |  |
| $Z'_{\rm SSM}$ | 4.9                            | 4.9    | 4.5      | 4.5    | 5.1        | 5.1    |  |  |

# **Dilepton Search: HVT Exclusion Contour**



- Limits extracted on the Fermion-Higgs/Vector Boson and Quark-lepton coupling parameter space
- Area outside the curve is excluded
- HVT bosons can couple to fermions (f), leptons (l), and Higgs (h)

### **Dilepton Search: Summary**



### Heavy Neutrino search: arXiv 1904.12679



- Search for a right-handed gauge boson  $(W_R)$  decaying into a boosted right-handed heavy neutrino  $(N_R)$  together with a lepton
- Focused on the regime where the mass of the heavy neutrino is less than 10% of the right-handed gauge boson
- The decay products of the heavy neutrino can be found within a jet within a large-R jet
- For the electron channel the energy deposit is included in the large-R jet



# Heavy neutrino search: $m_{W_R}$



|                                                                                       | Electron Channel    | Muon Channel        |
|---------------------------------------------------------------------------------------|---------------------|---------------------|
| Signal $(m_{W_{\mathrm{R}}} = 3 \text{ TeV}, m_{N_{\mathrm{R}}} = 150 \text{ GeV})$   | $346^{+48}_{-75}$   | $411_{-48}^{+36}$   |
| Signal $(m_{W_{\rm R}} = 3 \text{ TeV}, m_{N_{\rm R}} = 300 \text{ GeV})$             | $471_{-69}^{+42}$   | $429^{+29}_{-40}$   |
| Signal ( $m_{W_{\mathrm{R}}} = 4 \text{ TeV}, m_{N_{\mathrm{R}}} = 400 \text{ GeV}$ ) | $66^{+6}_{-10}$     | $57^{+4}_{-4}$      |
| Expected background                                                                   | $2.8^{+0.5}_{-0.7}$ | $1.9^{+0.5}_{-0.7}$ |
| Observed events                                                                       | 8                   | 4                   |
| Significance                                                                          | $2.4\sigma$         | $1.2\sigma$         |
| <i>p</i> -value                                                                       | 0.0082              | 0.12                |



Good agreement found between data and expectation

### Heavy neutrino search: Exclusion contour



- Limits extracted in the  $m_{N_R}$ - $m_{w_R}$  plane
- Slightly worse limits for the muon channel at high mass due to worse resolution
- Observed limits also shown for the resolved topology, where heavy neutrino is produced with large  $p_T$  and their decay products are very collimated. A large-R jet can reconstruct the  $N_R$

# Lepton+MET: Analysis Strategy



- Possible additional charged gauge
   bosons
- Its decay would produce a signature with a lepton and missing transverse energy coming from the neutrino
- Benchmark model used is the Sequential Standard Model
- No interference between W and W' considered

#### AIM

Search for deviations from Standard Model predictions in the  $m_T$  distribution EVENT SELECTION

Identify events with one high-pT lepton and large missing transverse energy



#### BACKGROUND ESTIMATION

- Events with prompt leptons are estimated through the use of Monte Carlo simulation
- Backgrounds coming from non-prompt leptons are estimated through data-driven methods 13

# Lepton+MET: $m_T$ spectrum



- No significant deviations found from Standard Model expectation
- Largest local significance in the muon channel (2.2  $\sigma$ ) for  $m_{wr} = 1.55 \text{ TeV}$
- Extract limits on the Sequential Standard Model

# Lepton+MET: Exclusion Limits



|                   | $m_{W'}$ lower limit [TeV] |          |  |  |
|-------------------|----------------------------|----------|--|--|
| Decay             | Expected                   | Observed |  |  |
| $W' \to e\nu$     | 5.4                        | 5.7      |  |  |
| $W' \to \mu \nu$  | 4.9                        | 4.8      |  |  |
| $W' \to \ell \nu$ | 5.5                        | 5.6      |  |  |

- Bayesian Limits with flat prior on the signal cross-section
- Mass limits are increased by about half a TeV compared to the 2015+2016
- Results with the full Run-2 dataset coming in the next few months

# Summary

- Searches with leptons provide a useful test of the Standard Model, with generally manageable backgrounds
- Still lots of data left to be analyzed!

| A                | TLAS Exotics Searche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s* - 95                                                                                                                                       | % CL                                                                                  | Upper Exclusion Limits ATL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AS Preliminary                                                                                                                                                               |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sta              | atus: March 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                       | $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sqrt{s}$ = 8, 13 TeV                                                                                                                                                       |
|                  | Model $\ell, \gamma$ J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lets† E <sup>mis</sup> T                                                                                                                      | <sup>ss</sup> ∫£dt[fb                                                                 | - <sup>1</sup> ] Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reference                                                                                                                                                                    |
| Extra dimensions | $\begin{array}{c c} \text{ADD} \ G_{KK} + g/q & 0 \ e,\mu \\ \text{ADD} \ \text{Ornoresonant} \gamma & 2 \ \gamma \\ \text{ADD} \ \text{OBH} & - \\ \text{ADD} \ \text{OBH} \ \text{high} \sum_{PT} & \geq 1 \ e,\mu \\ \text{ADD} \ \text{BH} \ \text{high} \sum_{PT} & 2 \ n \ e,\mu \\ \text{ADD} \ \text{BH} \ \text{high} \sum_{PT} & 2 \ n \ \text{multiple} \\ - \\ \text{RSI} \ G_{KK} \rightarrow \text{WW}/ZZ & \text{qqg} \ \text{Q} \ e,\mu \\ \text{Buk} \ \text{RS} \ G_{KK} \rightarrow \text{WW}/ZZ \rightarrow \text{qqg} \ \text{Q} \ e,\mu \\ \text{Buk} \ \text{RS} \ G_{KK} \rightarrow \text{tf} & 1 \ e,\mu \ \geq 1 \\ \text{QUED} \ \text{APP} \ \text{P} & 1 \ e,\mu \\ \end{array}$ | 1 - 4 j Yes<br>2 j -<br>≥ 2 j -<br>≥ 3 j -<br>2 J -<br>b, ≥ 1J/2] Yes<br>2 b, ≥ 3 j Yes                                                       | 36.1<br>36.7<br>37.0<br>3.2<br>3.6<br>36.7<br>36.1<br>139<br>3.6<br>36.1<br>5<br>36.1 | $\begin{tabular}{ c c c c c } \hline M_D & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1711.03301<br>1707.04147<br>1703.09127<br>1606.02265<br>1512.02586<br>1512.02586<br>1572.02586<br>1572.02586<br>1572.02586<br>ATLAS-CONF-2019-003<br>1804.0823<br>1803.09678 |
| Gauge bosons     | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>2 b<br>b, ≥ 1J/2j Yes<br>- Yes<br>2 J                                                                                                     | 139<br>36.1<br>36.1<br>36.1<br>36.1<br>36.1<br>36.1<br>139<br>36.1<br>36.1            | 2 mass         5.1 TeV           2 mass         2.42 TeV           2 mass         2.1 TeV           2 mass         3.0 TeV           W mass         5.5 TeV           W mass         3.7 TeV           W mass         4.8 TeV           W mass         2.3 TeV           W mass         2.3 TeV           W mass         2.3 TeV                                                                                                                                                                                                                                                      | 1903.06248<br>1709.07242<br>1805.09299<br>1804.10823<br>ATLAS-CONF-2018-017<br>1801.06992<br>ATLAS-CONF-2019-003<br>1712.06518<br>1807.10473                                 |
| G                | Clgagag −<br>Clℓℓqg 2 e,μ<br>Clℓℓttt ≥1 e,μ ≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2j –<br>– –<br>1b,≥1j Yes                                                                                                                     | 37.0<br>36.1<br>36.1                                                                  | Λ         21.8 TeV         η <sub>LL</sub> Λ         25.7 TeV         40.0 TeV         η <sub>LL</sub> Λ         2.57 TeV         IC <sub>t1</sub> = 4         40.0 TeV         η <sub>LL</sub>                                                                                                                                                                                                                                                                                                                                                                                       | 1703.09127<br>1707.02424<br>1811.02305                                                                                                                                       |
| MQ               | $ \begin{array}{lll} \mbox{Axial-vector mediator (Dirac DM)} & 0 \ e, \mu \\ \mbox{Colored scalar mediator (Dirac DM)} & 0 \ e, \mu \\ \mbox{V}\chi\chi \mbox{ EFT (Dirac DM)} & 0 \ e, \mu & 1 \\ \mbox{Scalar reson. } \phi \rightarrow t\chi \ (Dirac DM) & 0 \ -1 \ e, \mu & 1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{lll} 1-4 \ j & \mbox{Yes} \\ 1-4 \ j & \mbox{Yes} \\ J, \leq 1 \ j & \mbox{Yes} \\ b, 0\mbox{-}1 \ J & \mbox{Yes} \end{array}$ | 36.1<br>36.1<br>3.2<br>36.1                                                           | m <sub>mod</sub> 1.55 TeV         g <sub>s</sub> =0.25, g <sub>s</sub> =1.0, m(χ) = 1 GeV           m <sub>mod</sub> 1.67 TeV         g=1.0, m(χ) = 1 GeV           M,         700 GeV         m(χ) < 150 GeV                                                                                                                                                                                                                                                                                                                                                                         | 1711.03301<br>1711.03301<br>1608.02372<br>1812.09743                                                                                                                         |
| ΓO               | Scalar LQ 1 <sup>st</sup> gen         1,2 e           Scalar LQ 2 <sup>nd</sup> gen         1,2 μ           Scalar LQ 3 <sup>rd</sup> gen         2 τ           Scalar LQ 3 <sup>rd</sup> gen         0-1 e,μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≥ 2 j Yes<br>≥ 2 j Yes<br>2 b -<br>2 b Yes                                                                                                    | 36.1<br>36.1<br>36.1<br>36.1                                                          | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1902.00377<br>1902.00377<br>1902.08103<br>1902.08103                                                                                                                         |
| Heavy<br>quarks  | $ \begin{array}{lll} VLQ\ TT \to Ht/Zt/Wb + X & \mbox{multi-channel} \\ VLQ\ BB \to Wt/Zb + X & \mbox{multi-channel} \\ LQ\ T_{20}\ T_{20}T_{20,1} \mathcal{T}_{20,3} \to Wt + X & \mbox{2}(SS)/2.3\ e_{\mu} \geq \\ VLQ\ V \to Wb + X & \mbox{1}\ e_{\mu}, 2 \geq \\ VLQ\ B \to Hb + X & \mbox{0}\ e_{\mu}, 2 \gamma \geq \\ VLQ\ Q \to WdWq & \mbox{1}\ e_{,\mu} \end{array} $                                                                                                                                                                                                                                                                                                                               | 1 b, ≥1 j Yes<br>1 b, ≥1 j Yes<br>1 b, ≥1 j Yes<br>2 b, ≥1 j Yes<br>≥4 j Yes                                                                  | 36.1<br>36.1<br>36.1<br>36.1<br>36.1<br>5 79.8<br>5 20.3                              | T mass         1.37 TeV         SU(2) doublet           B mass         1.34 TeV         SU(2) doublet           Try, mass         1.64 TeV         SU(2) doublet           Ymass         1.65 TeV         SU(7), -1, -1, -1, -1, -1, -1, -1, -1, -1, -1                                                                                                                                                                                                                                                                                                                               | 1808.02343<br>1808.02343<br>1807.11883<br>1812.07343<br>ATLAS-CONF-2018-024<br>1509.04261                                                                                    |
| Excited          | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2j –<br>1j –<br>1b,1j –<br>– –                                                                                                                | 139<br>36.7<br>36.1<br>20.3<br>20.3                                                   | n² mass         6.7 TeV         only u² and d², h = m(q²)           n² mass         5.3 TeV         only u² and d², h = m(q²)           b² mass         2.5 TeV         only u² and d², h = m(q²)           u² mass         2.5 TeV         h = 1.5 TeV           u² mass         3.0 TeV         h = 3.0 TeV                                                                                                                                                                                                                                                                         | ATLAS-CONF-2019-007<br>1709.10440<br>1805.09299<br>1411.2921<br>1411.2921                                                                                                    |
| Other            | Type III Seesaw 1 e, $\mu$<br>LRSM Majorana $\nu$ 2, $\mu$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 3, 4 e, $\mu$ (SS)<br>Higgs triplet $H^{\pm\pm} \rightarrow \tau \tau$ 3, e, $\mu$ , $\tau$<br>Multi-charged particles<br>Magnetic monopoles –<br>Vs = 8 TeV v v s = 13 TeV<br>v s = 13 TeV<br>v s = 13 TeV<br>v s = 13 TeV                                                                                                                                                                                                                                                                                                                                                                     | ≥ 2 j Yes<br>2 j -<br><br><br><br><br><br><br><br><br>                                                                                        | 79.8<br>36.1<br>36.1<br>20.3<br>36.1<br>7.0                                           | M <sup>2</sup> mass         560 GeV         m(Wn) = 4.1 TeV, g <sub>0</sub> = g <sub>0</sub> Norman         3.2 TeV         m(Wn) = 4.1 TeV, g <sub>0</sub> = g <sub>0</sub> H <sup>14</sup> mass         870 GeV.         DV poduction           H <sup>14</sup> mass         400 GeV.         DV poduction           multi-staged particle mass         1.22 TeV         DV poduction, i, i  = 1 = g <sub>0</sub> , spin 1/2           monopole mass         1.32 TeV         DV poduction, i, i  = 1 = g <sub>0</sub> , spin 1/2           10 <sup>-1</sup> 1         10         - | ATLAS-CONF-2018-020<br>1809.11105<br>1710.09748<br>1411.2921<br>1812.03673<br>1509.08059                                                                                     |
|                  | partial data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | run data                                                                                                                                      |                                                                                       | Mass scale [Tev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                            |

**IU** 300

\*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

# **Dilepton Search: Systematics**

| Uncertainty source         | Dielectron                                                 |                            | Dimuon                                                     |                                                            |
|----------------------------|------------------------------------------------------------|----------------------------|------------------------------------------------------------|------------------------------------------------------------|
| for $m_X$ [GeV]            | 300                                                        | 5000                       | 300                                                        | 5000                                                       |
| Spurious signal            | $\pm 12.5 (12.0)$                                          | $\pm 0.1 \ (1.0)$          | $\pm 11.7 (11.0)$                                          | $\pm 2.1 \ (2.2)$                                          |
| Lepton identification      | $\pm 1.6 \ (1.6)$                                          | $\pm 5.6$ (5.6)            | $\pm 1.8 \ (1.8)$                                          | $^{+25}_{-20} \begin{pmatrix} +25\\ -20 \end{pmatrix}$     |
| Isolation                  | $\pm 0.3  (0.3)$                                           | $\pm 1.1 \ (1.1)$          | $\pm 0.4 \ (0.4)$                                          | $\pm 0.4 \ (0.5)$                                          |
| Luminosity                 | $\pm 1.7~(1.7)$                                            | $\pm 1.7 \ (1.7)$          | $\pm 1.7 \ (1.7)$                                          | $\pm 1.7 \ (1.7)$                                          |
| Electron energy scale      | $^{-1.7}_{-4.0} \begin{pmatrix} +1.0\\ -1.8 \end{pmatrix}$ | $^{+0.1}_{-0.4}$ (±0.8)    | -                                                          | -                                                          |
| Electron energy resolution | +7.9 +1.1 -8.3 (+1.1) -0.9                                 | $^{+0.4}_{-0.9}~(\pm 0.1)$ | -                                                          | -                                                          |
| Muon ID resolution         | -                                                          | -                          | $^{+0.8}_{-2.3} \begin{pmatrix} +0.3\\ -0.8 \end{pmatrix}$ | $^{+0.6}_{-0.4} \begin{pmatrix} +0.5\\ -0.3 \end{pmatrix}$ |
| Muon MS resolution         | -                                                          | -                          | $^{+2.8}_{-3.8} \begin{pmatrix} +1.0\\ -1.3 \end{pmatrix}$ | $\pm 2.4 (2.1)$                                            |
| 'Good muon' requirement    | -                                                          | -                          | $\pm 0.6~(0.6)$                                            | $^{+55}_{-35} \begin{pmatrix} +55\\ -35 \end{pmatrix}$     |

Systematics for zero (10) % width

# Lepton+MET: Systematics

| Source                                      | Electron cl           | nannel                  | Muon channel    |               |  |
|---------------------------------------------|-----------------------|-------------------------|-----------------|---------------|--|
|                                             | Background            | $\operatorname{Signal}$ | Background      | Signal        |  |
| Trigger                                     | negl. (negl.)         | negl. (negl.)           | 1% (1%)         | 2%~(2%)       |  |
| Lepton reconstruction<br>and identification | negl. (negl.)         | negl. (negl.)           | 7%~(21%)        | 5%~(29%)      |  |
| Lepton momentum<br>scale and resolution     | 4% (3%)               | 4% (3%)                 | $3\%\;(12\%)$   | $7\%\;(10\%)$ |  |
| Multijet background                         | 7% (113%)             | N/A (N/A)               | 1% (1%)         | N/A (N/A)     |  |
| Top extrapolation                           | 2% (5%)               | N/A $(N/A)$             | 3% (3%)         | N/A (N/A)     |  |
| Top normalization                           | $< 0.5\% \ (< 0.5\%)$ | N/A (N/A)               | < 0.5%~(< 0.5%) | N/A $(N/A)$   |  |
| Diboson extrapolation                       | 2% (9%)               | N/A (N/A)               | 3%~(10%)        | N/A (N/A)     |  |
| PDF choice for DY                           | 1% (14%)              | N/A (N/A)               | < 0.5%~(< 0.5%) | N/A (N/A)     |  |
| PDF variation for DY                        | 8% (12%)              | N/A (N/A)               | 7%~(11%)        | N/A (N/A)     |  |
| EW corrections for DY                       | 4% (5%)               | N/A $(N/A)$             | 4% (6%)         | N/A $(N/A)$   |  |
| Luminosity                                  | 2% (1%)               | 2%~(2%)                 | 2%~(2%)         | 2% (2%)       |  |
| Total                                       | 13% (115%)            | 4% (4%)                 | 12% (29%)       | 9% (31%)      |  |

### **Dilepton Search: parametric function**

The smooth functional form for the background is based on fit performance studies on a MC background template. The associated uncertainties are also estimated through these studies. In order to minimise the statistical uncertainties in this procedure, the background template for DY is produced from large-statistics samples simulated only at generator level and smeared by the experimental dilepton mass resolution, described in the previous section, with mass-dependent acceptance and efficiency corrections applied. A similar procedure is applied to the generator-level dilepton mass distribution in the  $t\bar{t}$  sample exploiting the larger number of events from the generator-level mass distribution. The distributions from the diboson and single-top simulated samples and, in the electron channel, a template for multi-jet and W+jet processes are also considered. All MC-based contributions are scaled by their respective cross-sections.

In order to select the background functional form, a fit to the dilepton mass background template is performed, under the signal plus background hypothesis, for various functional forms, following the procedure outlined in Ref. [47]. The chosen functional form is the one with the smallest absolute number of fitted signal events ('spurious signal'), which are determined as as a function of  $m_{\ell\ell}$ :

$$f_{\ell\ell}(m_{\ell\ell}) = f_{BW,Z}(m_{\ell\ell}) \cdot (1 - x^c)^b \cdot x^{\sum_{i=0}^3 p_i \log(x)^i},$$
(1)

where  $x = m_{\ell\ell}/\sqrt{s}$  and parameters *b* and  $p_i$  with i = 0, ...3 are left free in the fit to data and independent for dielectron and dimuon channels. The parameter *c* is 1 for the dielectron and 1/3 for the dimuon channel. The function  $f_{BW,Z}(m_{\ell\ell})$  is a non-relativistic Breit–Wigner function with  $m_Z = 91.1876$  GeV and  $\Gamma_Z = 2.4952$  GeV [48]. The normalisation of the background function is such that the integral *a* corresponds to the total number of background events. To further validate this functional form an extra degree of freedom (i = 4) is added to the fit function before the final data analysis, to check if it improves the likelihood value of the fit by more than  $2\sigma$ . To check the fit stability in the high-mass region, signal injection tests are performed at various mass points. No significant bias in the number of extracted signal events is observed.