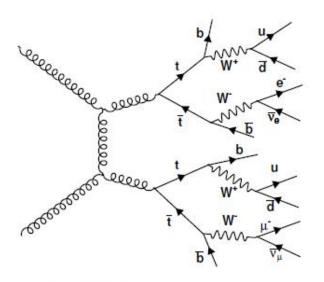


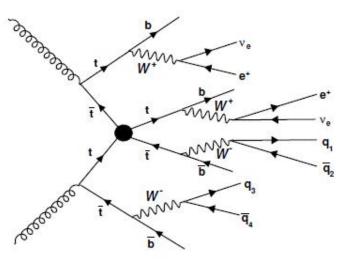
Four Tops Search in SSML channel at ATLAS

Shuyang Hu 1,2 Liang Li 1 Deliot Frederic 2

1. Shanghai Jiao Tong University

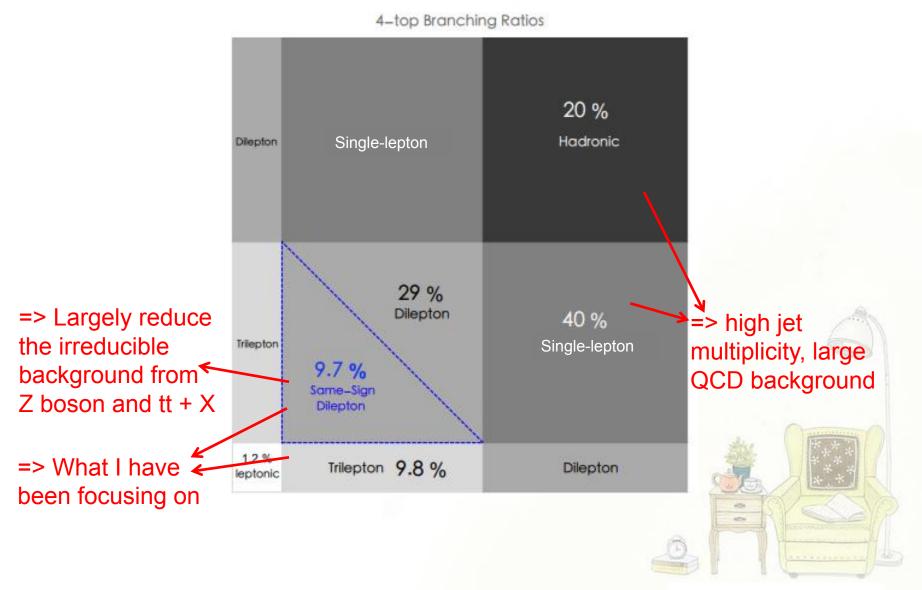
2. Université Paris-Saclay


27.10.2019



Physics motivation

=> SM prediction of 4tops xsec is very small: ~9.2 fb(NLO) at 13 TeV, not observed yet, rare process search



Example of Standard Model tītī event whose decay contains two same-sign leptons. Example of Feynman diagram of tītī production via contact interaction.

- => Sensitive to BSM physics like Contact interaction (CI), Vector-like quark (VLQ), 2 Higgs Doublet Model (2HDM) ...
- 1) Top mass is close to the scale of electroweak symmetry breaking
- 2) Top has a very clear signiture: t -> b + W, high jet/bjet multiplicity

4tops branching ratios

What has been achieved

=>(SS + 3L) paper: 10.1007/JEHP12(2018)039

an 2019

=>(1L + OS) paper: 10.1103/PhysRevD.99.052009

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Search for new phenomena in events with same-charge leptons and *b*-jets in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

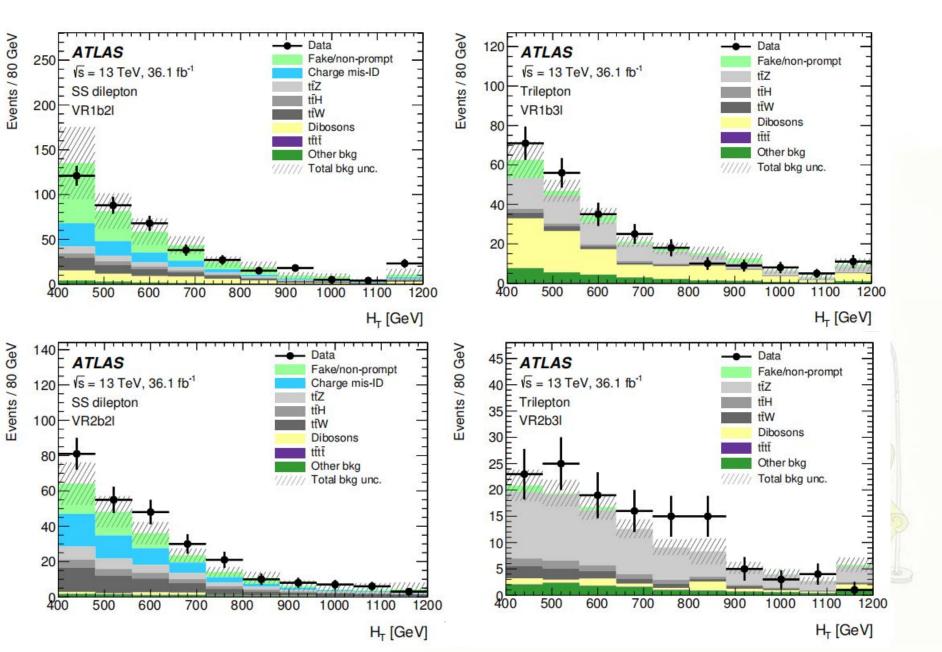
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Phys. Rev. D 99, 052009 (2019) DOI: 10.1103/PhysRevD.99.052009

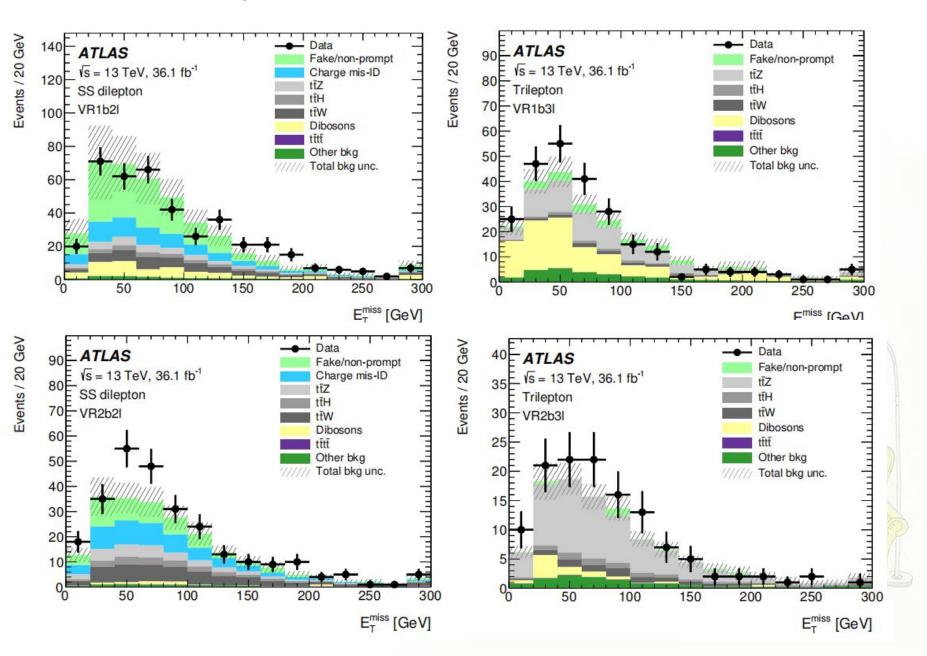
Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

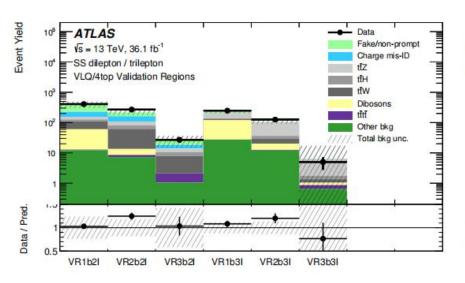
The ATLAS Collaboration

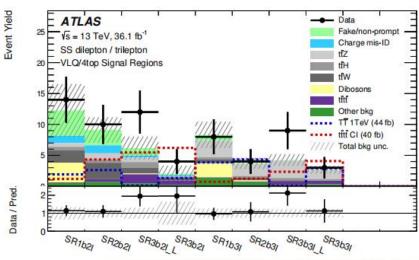
Background Estimation (SS+ML)


- - ∠Main irreducible background
 - ≥=> ttV, ttH, diboson
 - - ≥ triboson, VH, ttt, ttWW, tZW, tZ

Regions Definition (SS+ML)


Region name	N_j	N_b	N_{ℓ}	Lepton charges	Kinematic criteria
VR1b2ℓ	≥ 1	1	2	++ or	$400 < H_{\rm T} < 2400 \text{ GeV or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR1b2ℓ	≥ 1	1	2	++ or	
VR2b2ℓ	≥ 2	2	2	++ or	$H_{\rm T} > 400~{\rm GeV}$
SR2b2ℓ	≥ 2 ≥ 2	2	2	++ or	$H_{\rm T} > 1200$ GeV and $E_{\rm T}^{\rm miss} > 40$ GeV
VR3b2ℓ	≥ 3	≥ 3	2	++ or	$400 < H_{\rm T} < 1400 \text{ GeV or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR3b2ℓ_L	≥ 7	≥ 3	2	++ or	
SR3b2ℓ	≥ 3	≥ 3	2	++ or	$H_{\rm T} > 1200$ GeV and $E_{\rm T}^{\rm miss} > 100$ GeV
VR1b3ℓ	≥ 1	1	3	any	$400 < H_{\rm T} < 2000 \text{ GeV or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR1b3ℓ	≥ 1	1	3	any	$H_{\rm T} > 1000 \mathrm{GeV}$ and $E_{\rm T}^{\rm miss} > 140 \mathrm{GeV}$
VR2b3ℓ	≥ 2	2	3	any	$400 < H_{\rm T} < 2400 \text{ GeV or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR2b3ℓ	≥ 2	2	3	any	$H_{\rm T} > 1200$ GeV and $E_{\rm T}^{\rm miss} > 100$ GeV
VR3b3ℓ	≥ 3	≥ 3	3	any	$H_{\rm T} > 400~{\rm GeV}$
SR3b3ℓ_L	≥ 5	≥ 3	3	any	$500 < H_T < 1000 \text{ GeV} \text{ and } E_T^{\text{miss}} > 40 \text{ GeV}$
SR3b3ℓ	≥ 3	≥ 3	3	any	$H_{\rm T} > 1000$ GeV and $E_{\rm T}^{\rm miss} > 40$ GeV


Data/MC comparison in VRs


Data/MC comparison in VRs

Summary of data/MC comparison in SR/VRs

=> Background estimation is good

=> Combined fit in all SRs to extract the upper limit of POI

Systematic uncertainties

Uncertainty	$\mathrm{SR}1b2\ell$	$\mathrm{SR}2b2\ell$	SR3b2ℓ_L	$\text{SR}3b2\ell$	$\mathrm{SR}1b3\ell$	$\mathrm{SR}2b3\ell$	$SR3b3\ell$ L	$SR3b3\ell$
source	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
Jet energy resolution	3	1	5	6	3	5	3	4
Jet energy scale	3	3	9	6	3	5	11	6
b-tagging	5	3	6	7	3	4	9	9
efficiency								
Lepton ID efficiency	2	1	1	1	3	3	2	3
Pile-up reweighting	5	2	3	3	3	5	1	6
Luminosity	1	1	2	2	2	2	2	2
Fake/non-prompt	20	12	13	8	7	2	3	1
Charge mis-ID	2	3	1	2		(<u>1</u>	-	1 <u>00—2</u> 17
Cross-section	25	13	22	32	32	26	21	24

Uncertainties of the total background yeilds in the signal regions

Results (SS+ML)

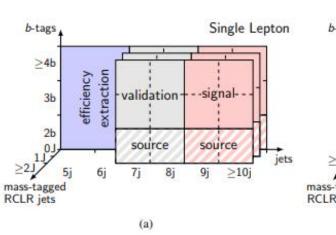
Source		SR1b2ℓ		SR2b2ℓ	SR	3 <i>b</i> 2ℓ_L		SR3b2ℓ
tīW	2.04 :	± 0.14 ± 0.49	2.68	$\pm 0.15 \pm 0.55$	0.95 ±	0.11 ± 0.31	0.40	$\pm 0.06 \pm 0.10$
tīΖ	0.58	$\pm 0.08 \pm 0.10$	0.95	$\pm 0.11 \pm 0.17$	0.72 ±	0.11 ± 0.19	0.11	± 0.05 +0.13 -0.10
Dibosons	3.2 :	±1.5 ±2.4		< 0.5	0.13 ±	0.13 +0.27 -0.00		< 0.5
tīH	0.56	$\pm 0.07 \pm 0.07$	0.57	$\pm 0.10 \pm 0.09$	0.91 ±	0.11 ± 0.22	0.19	$\pm 0.05 \pm 0.07$
tītī	0.10	$\pm 0.01 \pm 0.05$	0.44	$\pm 0.03 \pm 0.23$	1.46 ±	0.05 ± 0.74	0.75	$\pm 0.04 \pm 0.38$
Other bkg	0.52 :	$\pm 0.07 \pm 0.14$	0.68	$\pm 0.09 \pm 0.24$	$0.47 \pm$	0.08 ± 0.18	0.20	$\pm 0.04 \pm 0.06$
Fake/non-prompt	4.1	$^{+1.6}_{-1.4}$ ± 2.4	2.5	$^{+1.0}_{-0.9} \pm 1.1$	1.2	$^{+0.9}_{-0.7}$ ± 0.6	0.20	$^{+0.46}_{-0.20} \pm 0.16$
Charge mis-ID	1.17 :	$\pm 0.10 \pm 0.27$	1.29	$\pm 0.10 \pm 0.28$	0.32 ±	0.04 ± 0.09	0.21	$\pm 0.04 \pm 0.04$
Total bkg	12.3	$^{+2.2}_{-2.1} \pm 3.4$	9.1	$^{+1.2}_{-1.1} \pm 1.2$	6.2	^{+1.0} _{-0.8} ± 1.2	2.0	$^{+0.5}_{-0.2}\pm0.3$
Data yield		14		10	9	12		4
BSM significance		0.31		0.25		1.7		1.1
SM tītī significance		0.33		0.38		2.1		1.6

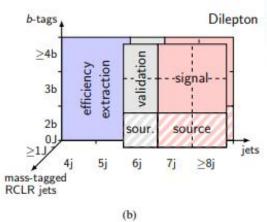
=> cut based analysis.

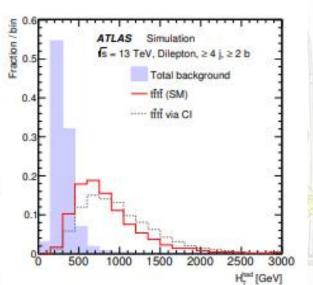
Source		SR1b3ℓ		SR2b3ℓ	S	R3 <i>b</i> 3ℓ_L		$SR3b3\ell$
tīW	0.66	$\pm 0.08 \pm 0.20$	0.38	$\pm 0.05 \pm 0.11$	0.21 ±	0.05 ± 0.09	0.15	± 0.04 ± 0.05
tīZ	2.66	$\pm 0.15 \pm 0.43$	1.90	$\pm 0.14 \pm 0.42$	2.80 ±	0.17 ± 0.58	1.47	$\pm 0.14 \pm 0.28$
Dibosons	2.3	$\pm 0.7 \pm 1.7$	0.22	$\pm 0.16 \pm 0.27$		< 0.5		< 0.5
tīH	0.30	$\pm 0.04 \pm 0.04$	0.28	$\pm 0.05 \pm 0.05$	0.38 ±	0.06 ± 0.07	0.10	$\pm 0.03 \pm 0.02$
tītī	0.06	$\pm 0.01 \pm 0.03$	0.13	$\pm 0.02 \pm 0.06$	0.58 ±	0.04 ± 0.29	0.59	$\pm 0.03 \pm 0.30$
Other bkg.	1.37	$\pm 0.13 \pm 0.45$	0.65	$\pm 0.10 \pm 0.27$	0.17 ±	0.09 ± 0.10	0.31	$\pm 0.07 \pm 0.11$
Fake/non-prompt	1.0	$^{+0.6}_{-0.5}$ ± 0.6	0.14	$^{+0.31}_{-0.12} \pm 0.09$	0.00	+0.38 +0.09 -0.00 -0.00	0.03	$^{+0.15}_{-0.02} \pm 0.00$
Total bkg	8.3	$^{+0.9}_{-0.8}$ ± 1.8	3.7	$^{+0.6}_{-0.3}$ ± 0.4	4.2	+0.4 -0.2 ± 0.7	2.7	± 0.2 ± 0.5
Data yield		8		4		9		3
BSM significance	- 1	-0.09		0.14		1.8		0.19
SM tītī significance		-0.07		0.21	(2.1		0.6

Table 14: Expected and observed 95% CL upper limits on the four-top-quark production cross-section in various models.

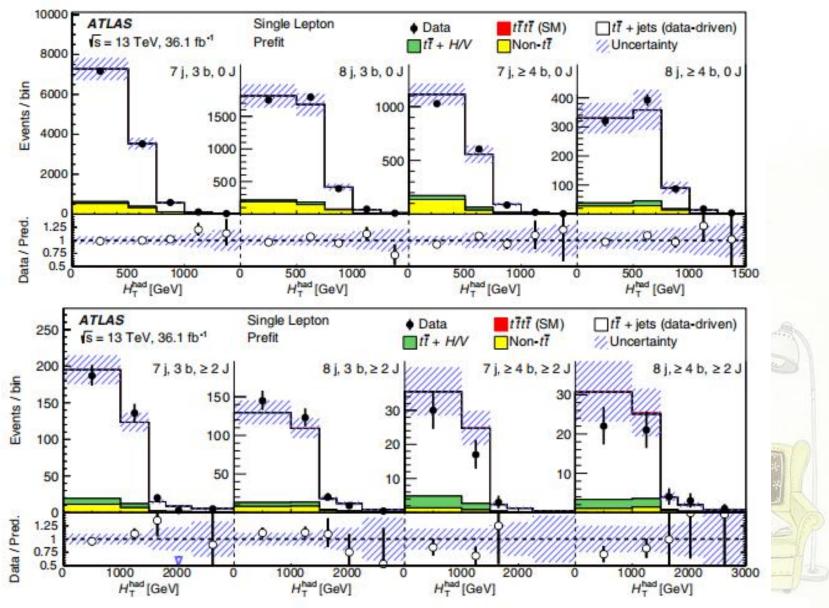
Observable	Expected median with 1σ range	Observed	
SM cross-section [fb]	29.0 + 12.2	69.2	
CI cross-section [fb]	20.8 + 12.2 - 8.1	38.6	

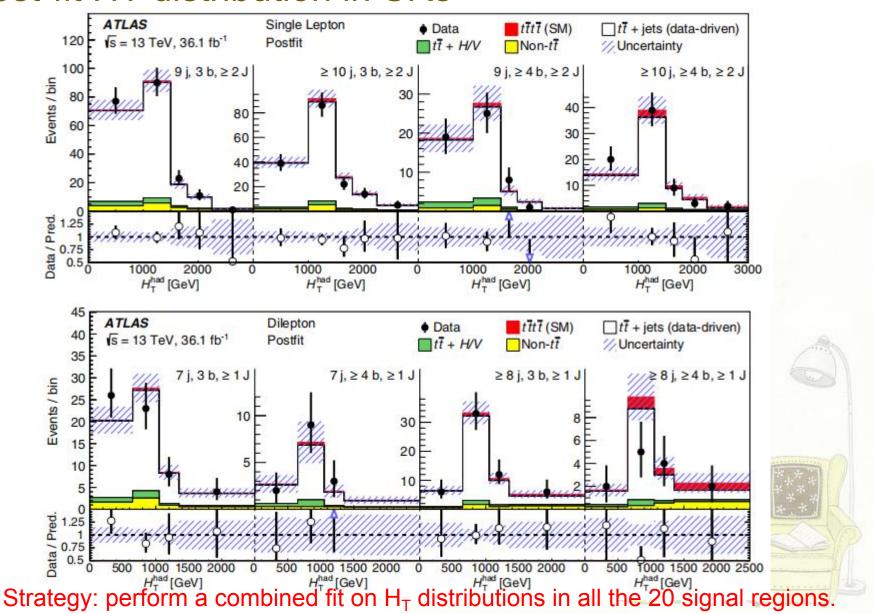

Search strategy (1L+OS)


Event selection:

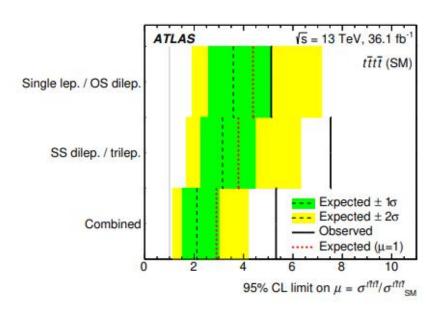

Preselection requirements							
Requirement	Single-lepton	Dilepton					
Trigger	Single-lepton triggers						
Leptons	1 isolated	2 isolated, opposite-sign					
Jets	≥5 jets	≥4 jets					
b-tagged jets	≥2 b-t	agged jets					
Other	$E_{\rm T}^{\rm miss} > 20~{\rm GeV}$	$m_{\ell\ell} > 50 \text{ GeV}$					
	$E_{\rm T}^{\rm miss} + m_{\rm T}^W > 60 \text{ GeV}$	$ m_{\ell\ell} - 91 \text{ GeV} > 8 \text{ GeV}$					

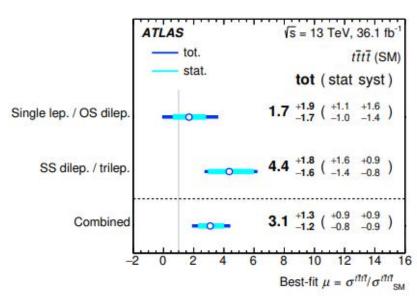
H_T distribution already provides good discrimination between signal and background.


Region definition:



Pre-fit HT distribution in VRs

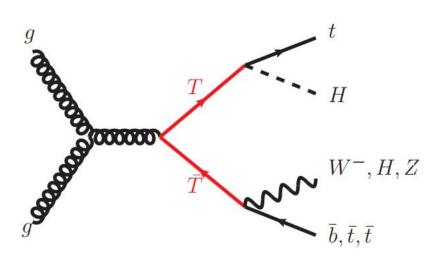

Post-fit HT distribution in SRs



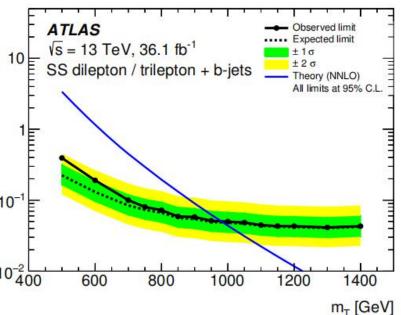
Systematic uncertainties

Uncertainty source	$\pm \Delta \mu$		
$t\bar{t}$ + jets modeling	+1.2	-0.96	
Background-model statistical uncertainty	+0.91	-0.85	
Jet energy scale and resolution, jet mass	+0.38	-0.16	
Other background modeling	+0.26	-0.20	
b-tagging efficiency and mistag rates	+0.33	-0.10	
JVT, pileup modeling	+0.18	-0.073	
$t\bar{t} + H/V$ modeling	+0.053	-0.055	
Luminosity	+0.050	-0.026	
Total systematic uncertainty	+1.6	-1.4	
Total statistical uncertainty	+1.1	-1.0	
Total uncertainty	+1.9	-1.7	

Results (combined)

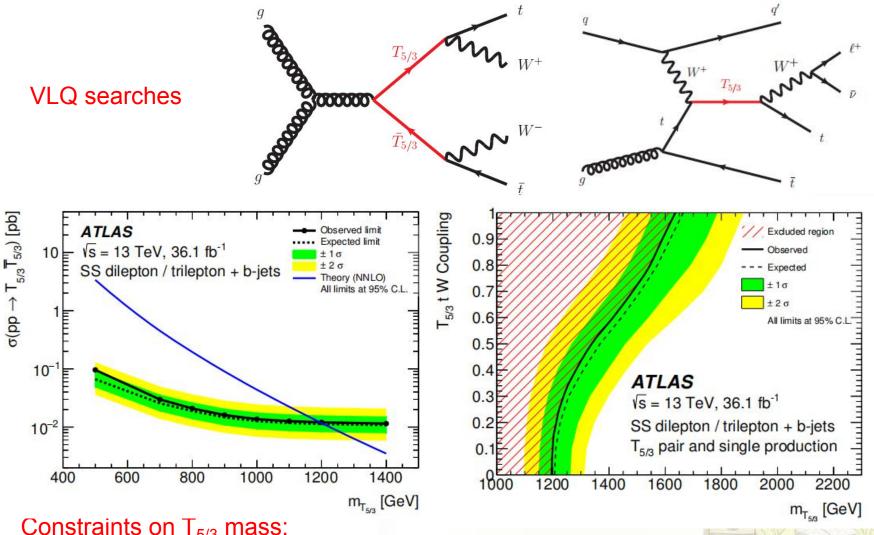





Summary:

Channel	xSec limit obs (exp)	significance obs (exp)
1L+OS	49 (19) fb	1.0(0.6)
SS+ML	69 (29) fb	3.0(0.8)
Combined	47 (33) fb	2.8(1.0)

VLQ searches

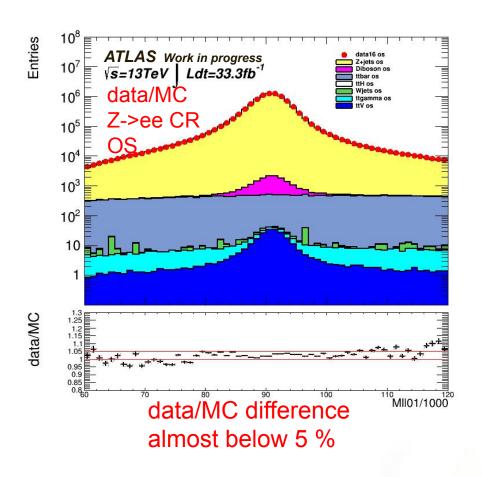


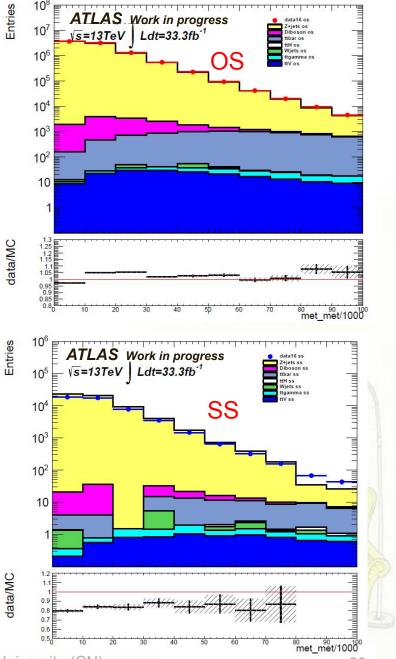
m_B > 1.00 TeV (1.01 TeV)

 $m_T > 0.98 \text{ TeV} (0.99 \text{ TeV})$

Constraints on $T_{5/3}$ mass:

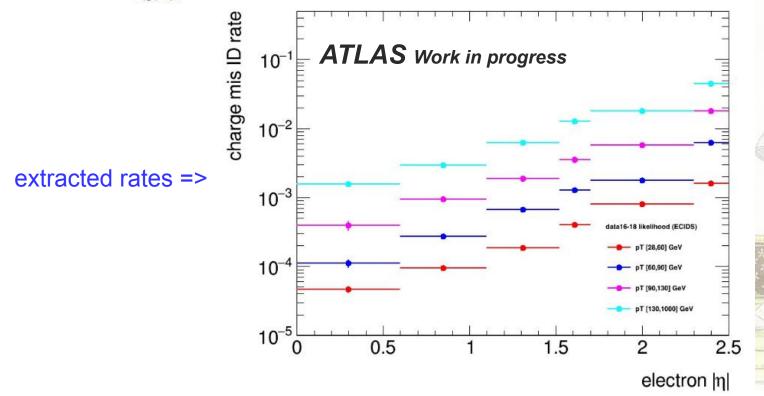
 $m_{T5/3} > 1.19 \text{ TeV} (1.21 \text{ TeV}) \text{ (assuming no single } T_{5/3} \text{ production)}$


Towards full Run-2 4tops analysis


- => Integrated luminosity ~ 140 fb⁻¹, ~4 times of 36.1 fb⁻¹, ~ 2 times improvement in significance expected
 - => Event selection optimization
 - => Background estimation
 - => Use MVA analysis to improve significance
- => Typical statistical procedure on BDT discriminant to extract the limit on signal strength
 - => Aim at 3 sigma evidence

Charge misID study

performed on Z->ee events


QmisID rate extraction using likelihood method

- => pT binning: {28,60,90,130,1000} GeV
- => |eta| binning: {0,0.6,1.1,1.52,1.7,2.3,2.5}

Performed in Z->ee events in data

=> Minimizing the following function to extract the best fitted QmisID rates

$$-\ln L(\epsilon|N_{ss},N) \approx \sum_{i,j,k,l} \ln[N^{ij,kl}(\epsilon_{i,k}+\epsilon_{j,l})] N_{ss}^{ij,kl} - N^{ij,kl}(\epsilon_{i,k}+\epsilon_{j,l}).$$

MVA setup && BDT input

Default settings:

- => BDT model with Gradient boosting
- => 16 input variables:
 - · H_T, jet/lepton's p_T, missing E_T
 - · distance between (I,I) (I,j) (I,b)
 - Sum over MV2C10 b-tagging socre
- => Training on LO 4tops signal against all backgrounds
- => Application on NLO signal
- => Combined fit on BDT output distribution in all the signal regions

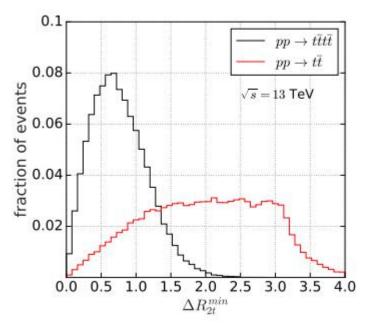
BDT hyper-parameter optimization

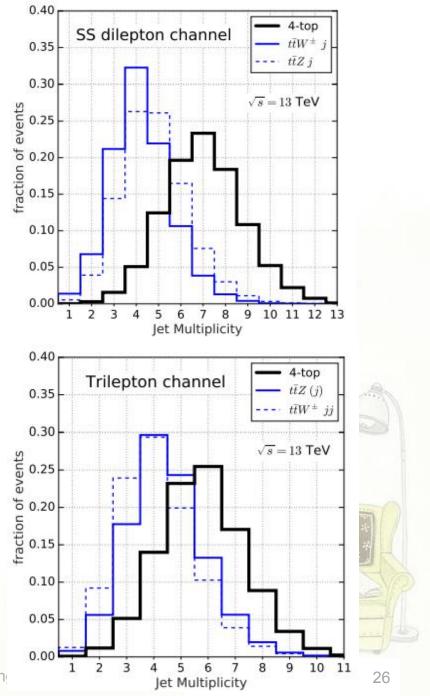
Default BDTG setting.

=> stat. only significance

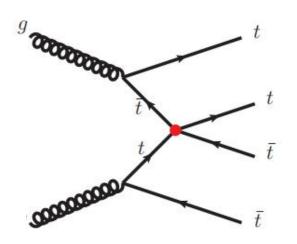
nBtags	nTrees	Shrinkage	nMaxDep	Sample Fraction	Significance
>=2	1000	0.10	4	0.50	3.87443
>=2	1000	0.10	2	0.50	3.9952
>=2	750	0.10	2	0.50	mprovement 3.89603
>=2	500	0.10	2	0.50	3.84626
>=2	250	0.10	2	0.50	3.93919
>=2	1000	0.05	2	0.50	3.8702
>=2	1000	0.20	2	0.50	3.90817
>=2	1000	0.10	2	0.20	3.80704
>=2	1000	0.10	2	0.35	3.81605
>=2	1000	0.10	2	0.65	3.93425
>=2	1000	0.10	2	8.0	3.86061

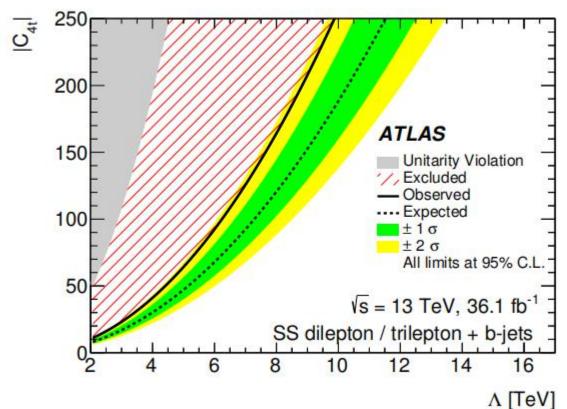
Summary

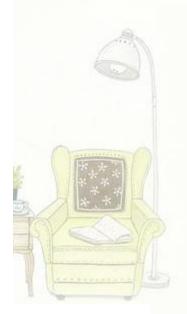

- => Two seperate 4 tops searches (1LOS and SSML) at ATLAS with 36.1 fb⁻¹ dataset were reviewed. SM and several BSM scenarios are investigated.
- => In Standard Model SSML channel analysis, the highest significance comes from 3b3l signal region, which is 2.1.
- => Combined result of the upper limit on SM 4tops production cross section observed (expected) is 49(19) fb, which is 5.3(2.1) times the SM prediction. The corresponding signicance is 2.8 (1.0). The excess mainly comes from SSML channel.
- => Full Run-2 analysis ongoing. Aim at 3 sigma evidence!


backup

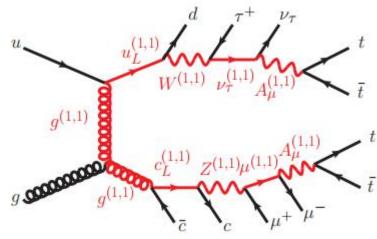
Signal/background features

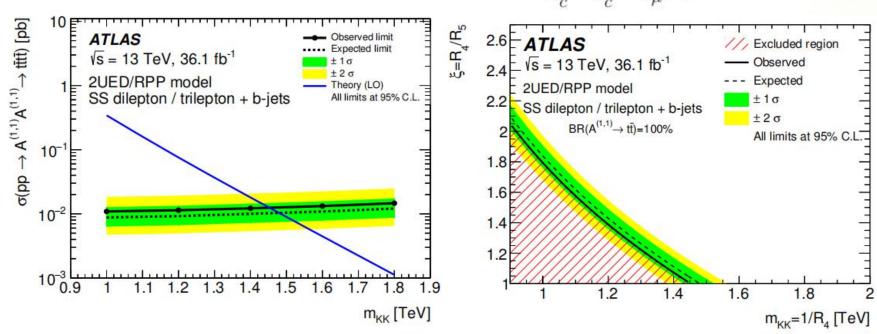


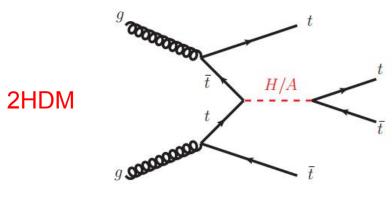

minimum distance between any top quark pair

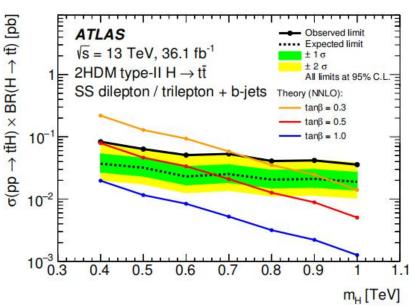


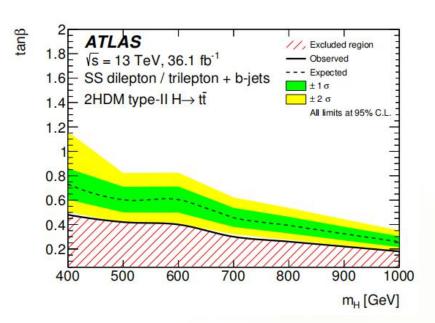
Contact Interaction model

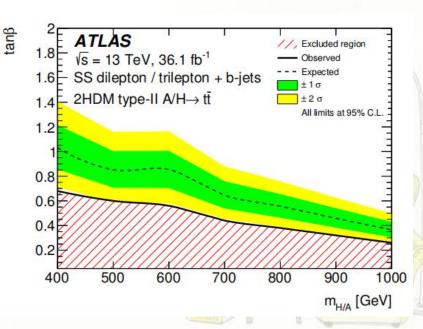

$$\mathcal{L}_{4t} = \frac{C_{4t}}{\Lambda^2} \left(\bar{t}_R \gamma^{\mu} t_R \right) \left(\bar{t}_R \gamma_{\mu} t_R \right)$$



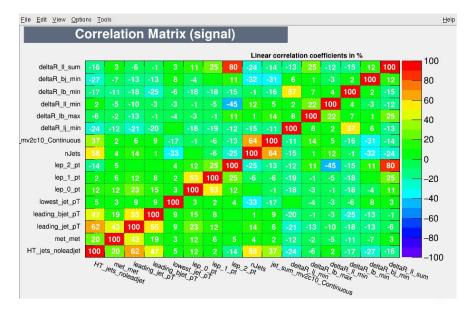

2UED/RPP model

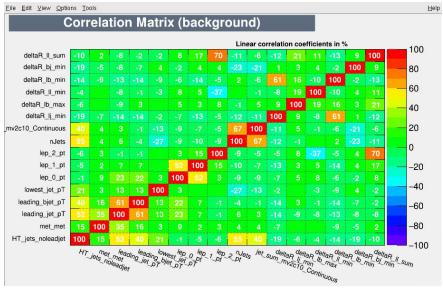


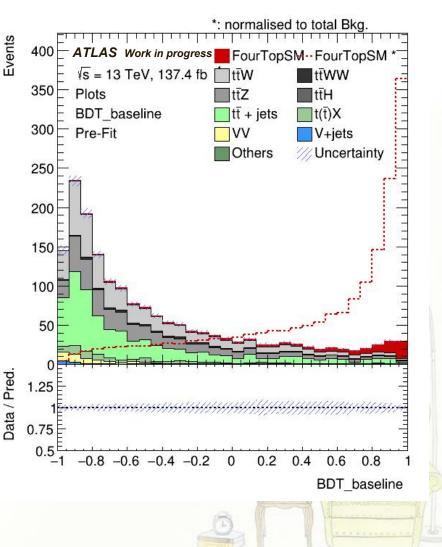



Constraints on Kaluza-Klein mass:

 $m_{KK} > 1.45 \text{ TeV} (1.48 \text{ TeV}) \text{ (assuming B(A(1,1)->tt)} = 100\%)$







Correlation Matrix && BDT output

