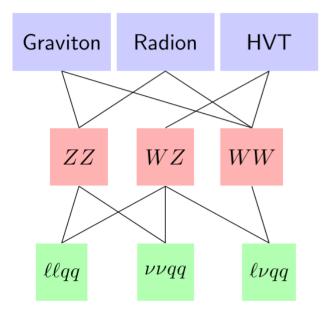
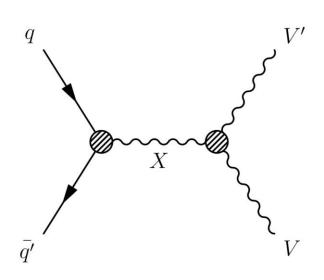
Search for heavy WW/WZ/ZZ resonances in semi-leptonic final states at ATLAS


Zhongyukun Xu Shandong University



Motivation

- Searching for heavy VV resonances in semileptonic final states
 - One hadronic V decay:
 - Two small-R jets or one large-R jet
 - One leptonic V decay:
 - > $l\bar{l}$, $l + E_{T,miss}$, or large $E_{T,miss}$
 - Can appear as resonant detector signature in invariant mass of the bosons

Three benchmark models for different spin:

Spin-0: Radion from Randall-Sundrum models

Phenomenology similar to heavy higgs

Spin-1: $W^{'}/Z^{'}$ from Heavy Vector Triplet Model

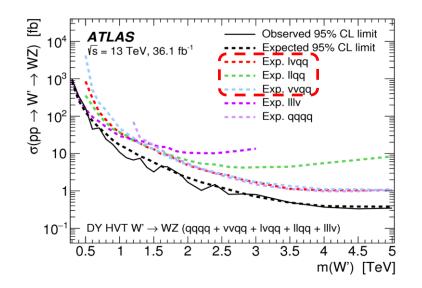
Couplings can be chosen to look like Extended Gauge Sector or Composite Higgs

Spin-2: Graviton from Randal-Sundrum

 "Bulk" extension where coupling to lightfermions suppressed

Overview

ATLAS EXPERIMENT JHEP 03 (2018) 042 DOI: 10.1007/JHEP03(2018)042


CERN-EP-2017-223 23rd March 2018

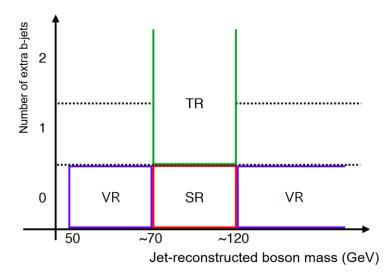
Search for *WW/WZ* resonance production in lvqqfinal states in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

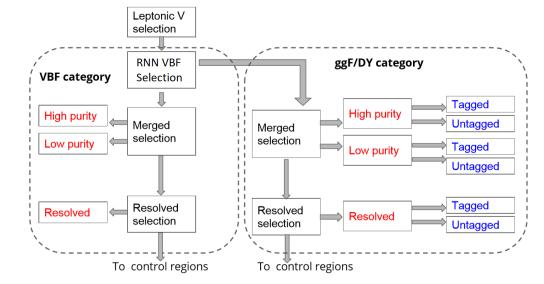
JHEP 03 (2018) 009 DOI: DOI:10.1007/JHEP03(2018)009

CERN-EP-2017-146 13th March 2018

Searches for heavy ZZ and ZW resonances in the $\ell\ell qq$ and $\nu\nu qq$ final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Previously two separate publications:


- Based on 2015+2016 data
- $lvq\bar{q}$ and $llq\bar{q} + vvq\bar{q}$ separated


- Update in this round:
 - Full Run-2 data
 - Analysis harmonizations
 - $Z \rightarrow bb$ with VR-jets
 - Track-CaloCluster jets
 - Radion and VBF Graviton
 - RNN GGF/VBF classifications

Analysis strategy

Cut strategy similar with preivous rounds:

- Three orthogonal channels in lepton multiplicity
- ggF/VBF classification
- Merged selection based on high/low-purity V-tagging
- Merged first strategy
- Categorize $Z \rightarrow qq/bb$

Use side-band regions to constrain major backgrounds:

- W+jets CR (WR) / Z+jets CR (ZR):
 Mass sidebands of 1/2-lepton channel
- Validation Region (VR): Mass sidebands of 0-lepton channel

- $t\bar{t}$ CR (TR) :

Additional b-jets in 1-lepton channel

Zhongyukun Xu

Analysis strategy

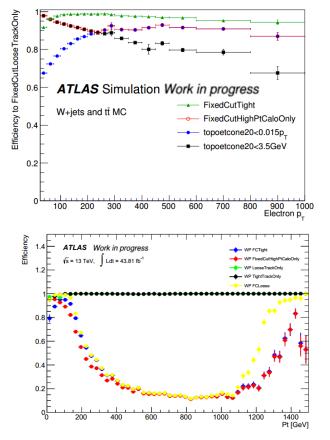
Background estimation:

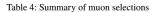
- W/Z + jets: Sherpa 2.2.1
- ttbar: PwPy8
- single-top : PwPy8
- diboson : Sherpa 2.2.1

• multijet : estimated in data-driven method, used only in 1-lepton channel resolved regime.

1	Regions		Spin-1 tr	riplet fit model (W	$W' \to ZW \text{ and } Z' \to WW$			
			Merged HP		Merged LP		Resolved	
			Tagged	Untagged	Tagged	Untagged	Tagged	Untagged
0-lepton	ggF	SR	\checkmark	\checkmark	\checkmark	\checkmark		-
o lopion	VBF	SR		\checkmark	\checkmark			_
		SR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	ggF	WCR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1-lepton		TopCR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
r repton		SR		✓	\checkmark			\checkmark
	VBF	WCR		\checkmark	\checkmark			\checkmark
		TopCR		\checkmark	\checkmark			\checkmark
		SR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	ggF	ZCR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2-lepton		TopCR	-	-	-	-	\checkmark	-
	VBF	SR		✓	\checkmark			\checkmark
VBF		ZCR		\checkmark	\checkmark			\checkmark

Jet: small-R jets, large-R jets, VR jets Lepton: electron and muon ID, MET: reconstruction by negative sum B-tagging: MV2c10 85% Overlap removal


Lepton selection


- 1-lepton:
 Tight ID, pT > 7GeV, |η|<2.47 (2.5)
- 2-lepton:

Loose ID, pT > 30 GeV, $|\eta| < 2.47$ (2.5)

Isolation:

FixedCutHighPtCaloOnly FixedCutTightTrackOnly FCLoose (pT <100GeV)

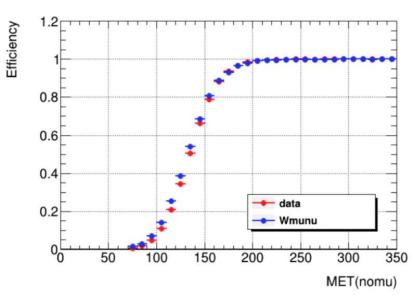

Criteria	Loose	Tight	
Pseudorapidity range	$ \eta < 2.5$		
Momentum Calibration	Sagitta Correction U	sed	
Transverse momentum	$p_{\rm T} > 7 { m ~GeV}$	$p_{\rm T} > 30 { m GeV}$	
d ₀ Significance Cut	$ d_0^{BL}(\sigma) < 3$		
z ₀ Cut	$ z_0^{BL}\sin\theta < 0.5 \text{ mm}$		
Selection Working Point	Loose	Medium	
Isolation Working Point	FCLoose at $p_{\rm T} < 100 {\rm GeV}$	FixedCutTightTrackOnly	
	and no isolation requirement at $> 100 \text{ GeV}$		

Table 3: Summary of electron selection				
Feature	Loose	Tight		
Pseudorapidity range	$ \eta < 2.47$			
Energy calibration	"es2017_R21_v0" (ESI	Model)		
Transverse momentum	$p_{\rm T} > 7 {\rm GeV}$	> 30 GeV		
Object quality [44]	Not from a bad calorimeter cluster (BADCLUSELECTRON)			
Object quanty [44]	Remove clusters from regions with EMEC bad HV (2016 data only)			
Track to vertex association	$ d_0^{BL}(\sigma) < 5$			
frack to vertex association	$ \Delta z_0^{BL} \sin \theta < 0.5 \text{ mm}$			
Identification	Identification Loose			
Isolation	FCLoose at $p_{\rm T} < 100 {\rm GeV}$	FixedCutHighPtCaloOnly		
	and no isolation requirement at $> 100 \text{GeV}$			

Zhongyukun Xu

Trigger requirement

- Single(double) lepton trigger is selected for 1(2) lepton channel
- MET trigger for 0-lepton channel
- $\mu v q \overline{q}$ channel found low efficiency for high pT events, so MET trigger is specifically used for $pT(\mu v) > 150$ GeV

Data-taking period	evqq and eeqq channels	$\mu \nu q q (p_T(\mu \nu) < 150 \text{ GeV})$ and $\mu \mu q q$ channels	$\mu v q q (p_{T}(\mu v) > 150 \text{ GeV})$ and $v v q q$ channels
2015	HLT_e24_lhmedium_L1EM20 OR HLT_e60_lhmedium OR HLT_e120_lhloose	HLT_mu20_iloose_L1MU15 OR HLT_mu50	HLT_xe70
2016a (run < 302919) ($L < 1.0 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)	HLT_e26_lhtight_nod0_ivarloose OR HLT_e60_lhmedium_nod0 OR HLT_e140_lhloose_nod0	HLT_mu26_ivarmedium OR HLT_mu50	HLT_xe90_mht_L1XE50
2016b (run \ge 302919) (L < 1.7 × 10 ³⁴ cm ⁻² s ⁻¹)	HLT_e300_etcut same as above	same as above	HLT_xe110_mht_L1XE50
2017 2018	same as above same as above	same as above same as above	HLT_xe110_pufit_L1XE55 HLT_xe110_pufit_xe70_L1XE50

0-lepton

Merged only

 $Z \rightarrow vv$: No loose lepton, $E_T^{miss} > 250 GeV$ $Z/W \rightarrow qq$: One large-R jet Anti-QCD: $p_T^{miss} > 250 GeV$, $\min(\Delta \phi(E_T^{miss}, j)) > 0.4$, $\Delta \phi(E_T^{miss}, p_T^{miss}) < 1.0$

Selection	S	R		VR
Selection	HP	LP	HP	LP
Number of Loose leptons				0
$E_{\mathrm{T}}^{\mathrm{miss}}$				> 250 GeV
$p_{\rm T}^{\rm miss}$	> 50 GeV			
$\min(\Delta \Phi(E_{\rm T}^{\rm miss},{\rm small-R jets}))$	> 0.4			
$\Delta \Phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss})$	< 1			
Number of large-R jets	≥ 1 large-R jets			
D_2 cut	pass fail pass fail		fail	
W/Z mass window cut	pass pass $m_J > 50$ GeV, fail mass window cut			> 50 GeV, fail mass window cut
Numb. of associated VR track jets <i>b</i> -tagged	For $Z \rightarrow J$: $\leq 1 \ (= 2)$ for untagged (tagged) category			

1-lepton

• Merged(Resolved) common selection: $W \rightarrow lv$: One tight lepton Anti-QCD: $E_T^{miss} > 100(60)GeV$, $p_{T,lv} > 200(75)GeV$

Separated selection

Merged: ggF(VBF)
 One large R jet

 $\min(p_{T,lv}, p_{T,J})/m_{WV} > 0.35(0.25)$ boson relative pT cut

Selection	Selection		R	W CR (WR)		$t\bar{t}$ CR (TR1)	
Selection		HP	LP	HP	LP	HP	LP
	Num of Tight leptons	1					
$W \to \ell \gamma$	Num of Loose leptons				0		
	$W \rightarrow UV$ $E_{\rm T}^{\rm miss} > 100 {\rm GeV}$						
	$p_{\mathrm{T}}(\ell \nu)$		> 200 GeV				
	Num of large- <i>R</i> jets				≥ 1		
$W/Z \rightarrow J$	D_2 cut	pass	fail	pass	fail	pass	fail
$W/Z \rightarrow J$	W/Z mass window cut	pass	pass	fail	fail	pass	pass
	Numb. of associated VR track jets <i>b</i> -tagged	For $Z \rightarrow J$: $\leq 1 \ (= 2)$ for untagged (tagged) category					
Topology cut	$\min\left(p_{\mathrm{T},\ell\nu},p_{\mathrm{T},J}\right)/m_{WV}$	> 0.35(0.25) for DY/ggF (VBF) category					
Top-quark veto	Num of <i>b</i> -tagged jets outside of large-R jet	0 ≥ 1					
	Pass VBF selection	no (yes) for DY/ggF (VBF) category) category		

1-lepton

Separated selection

Resolved: ggF(VBF)

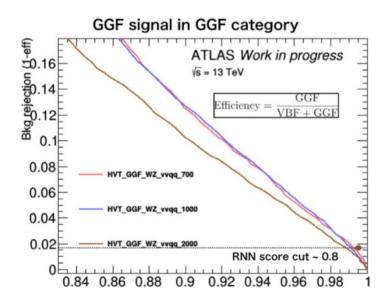
Two small jets

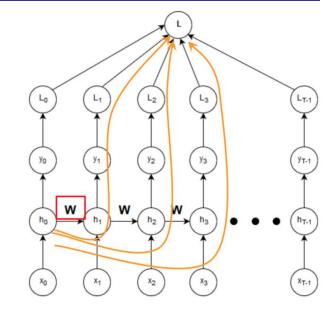
 $\Delta \phi(l, E_T^{miss}) < 1.5, \Delta \phi(j1, j2) < 1.5, \Delta \phi(l, j1, 2) < 1.5, \Delta \phi(E_T^{miss}, j1, 2) > 1.0$ for topology requirement

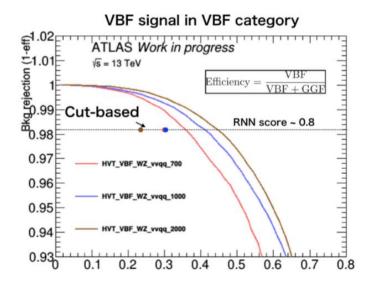
 $\min(p_{T,lv}, p_{T,jj})/m_{WV} > 0.35(0.25)$ boson relative pT to enhance signal

cuts		SR	W CR (WR)	tī CR (TR1)			
	Number of Tight leptons		1				
$W \rightarrow \ell \nu$	Number of Loose leptons		0				
$W \rightarrow UV$	$E_{\mathrm{T}}^{\mathrm{miss}}$		> 60 GeV				
	$p_{\mathrm{T}}(\ell \nu)$		> 75 GeV				
	Number of small-R jets		≥ 2				
	Leading jet $p_{\rm T}$		> 60 GeV				
	Subleading jet $p_{\rm T}$		> 45 GeV				
$W/Z \rightarrow jj$	$Z \rightarrow q\bar{q}$	$78. < m_{jj} < 105. \text{GeV}$	$50. < m_{jj} < 68. GeV$ or	$50 < m_{jj} < 150 \text{GeV}$			
	$W \rightarrow q\bar{q}$	$\rightarrow q\bar{q}$ 68. $< m_{jj} < 98. \text{GeV}$		50 < m _{jj} < 150000			
	Num. of <i>b</i> -tagged jets	For $Z \rightarrow jj: \leq 1 \ (= 2)$ for untagged (tagged) category					
	$\Delta \phi(j,\ell)$	> 1.0					
	$\Delta \phi(j, E_{\rm T}^{\rm miss})$		> 1.0				
Topology cuts	$\Delta \phi(j,j)$		< 1.5				
	$\Delta \phi(\ell, E_{\rm T}^{\rm miss})$		< 1.5				
	$\min\left(p_{\mathrm{T},\ell\nu},p_{\mathrm{T},jj}\right)/m_{\mathrm{WV}}$	> 0.35(0.25) for DY/ggF (VBF) category					
Top veto	Number of additional <i>b</i> -tagged jets	0 ≥1		≥ 1			
	Pass VBF selection	no (yes) for DY/ggF (VBF) category					

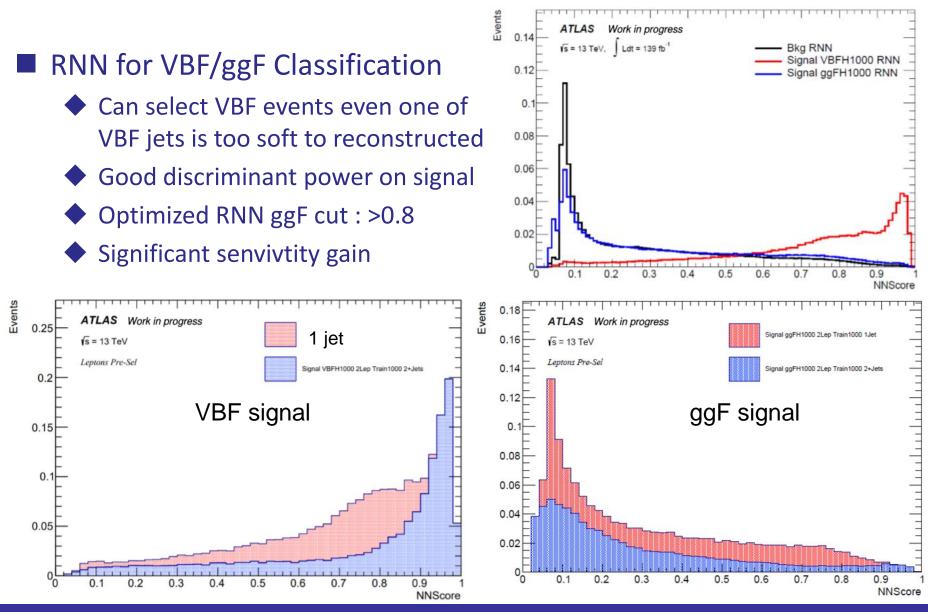
2-lepton


• Merged(Resolved) shared selection: $Z \rightarrow ll$: Two loose leptons $p_{T,sublep} > 30 GeV$


Separated selection


Merged: ggF(VBF) One large R jet $min(p_{T,lv}, p_{T,J})/m_{WV} > 0.35(0.25)$ boson relative pT cut

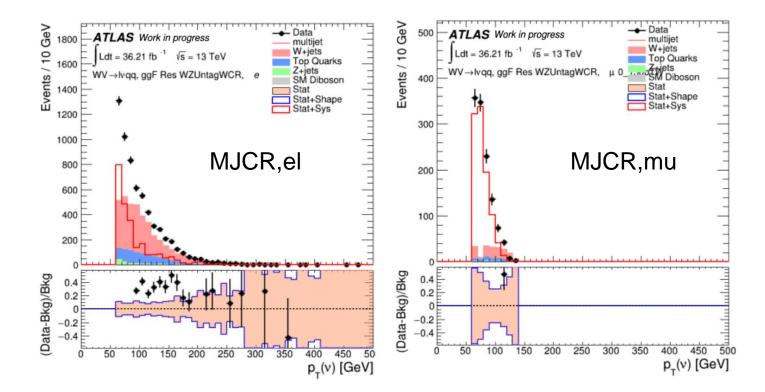
Selection	Selection		R	W CF	R (WR)		tī CR (TR1)
Selection		HP	LP	HP	LP	HP	LP
	Num of Tight leptons				1		
$W \rightarrow \ell \gamma$	Num of Loose leptons				0		
$W \rightarrow UV$	$W \to \ell V$ $E_{\rm T}^{\rm miss}$				> 100	GeV	
	$p_{\rm T}(\ell \nu)$		> 200 GeV				
	Num of large- <i>R</i> jets				≥ 1		
$W/Z \rightarrow J$	D_2 cut	pass	fail	pass	fail	pass	fail
$W/Z \rightarrow J$	W/Z mass window cut	pass	pass	fail	fail	pass	pass
	Numb. of associated VR track jets <i>b</i> -tagged	ed VR track jets <i>b</i> -tagged For $Z \rightarrow J$: $\leq 1 \ (= 2)$ for untagged (tagged) category					
Topology cut	$\min\left(p_{\mathrm{T},\ell\nu},p_{\mathrm{T},J}\right)/m_{WV}$	> 0.35(0.25) for DY/ggF (VBF) category					
Top-quark veto Num of <i>b</i> -tagged jets outside of large-R jet		$0 \ge 1$					
	Pass VBF selection	no (yes) for DY/ggF (VBF) category) category		


- RNN for VBF/ggF Classification
- **Developed ML technique**
 - Using a RNN with jet 4-momenta as inputs
 - RNN architecture since N(jets) is variable
 - WP optimized for same background rejection as the cut-based
 - Significant efficiency gain

ggF/VBF categorization

Zhongyukun Xu

CLHCP 2019

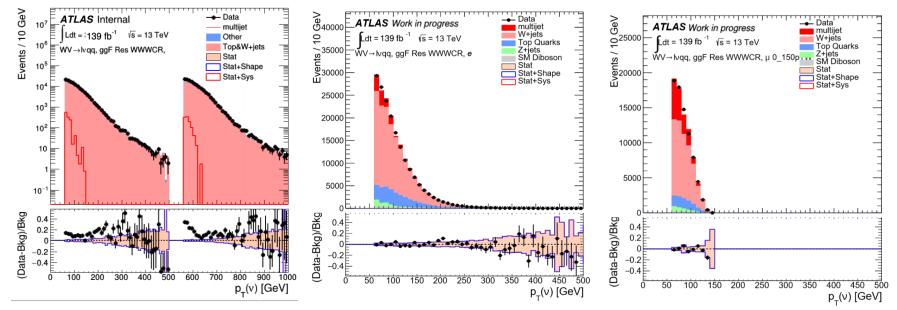

Fake Lepton Estimation

Fake lepton estimation in lvqq from template method

- Shape derived in MJ-enriched region with inverted lepton ID

only estimate events with single lepton trigger

- Data

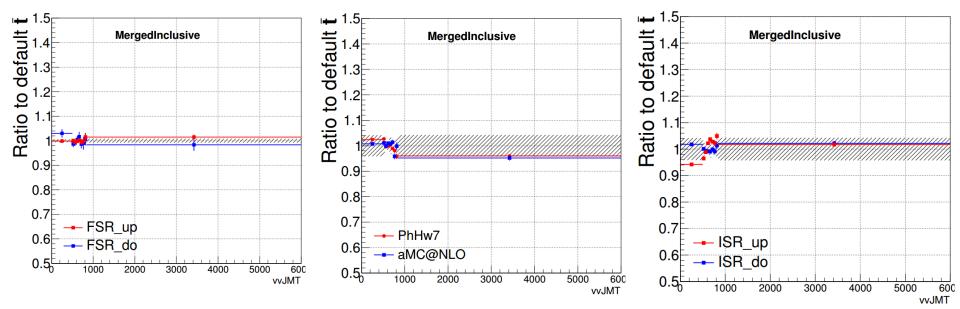

	Criterion	signal lepton	inverted lepton		
Electron	ID	TightLH	MediumLH		
Election	ID	TIghtLH	!TightLH		
	Calo Isolation	FixedCutHighPtCaloOnlyIso	FixedCutHighPtCaloOnlyIso		
Muon	ID	WHSignalMuon	WHSignalMuon		
	Track Isolation	Fired CutTicht Treel: Only Ise	!FixedCutTightTrackOnlyIso		
	TTACK ISOIAUOII	FixedCutTightTrackOnlyIso	$ptvarcone30/pt < 0.07^*$		
	*Only applied to events with $pTW < 150GeV$				

Fake Lepton Estimation

Validation of MJ estimation by WCR combined fit

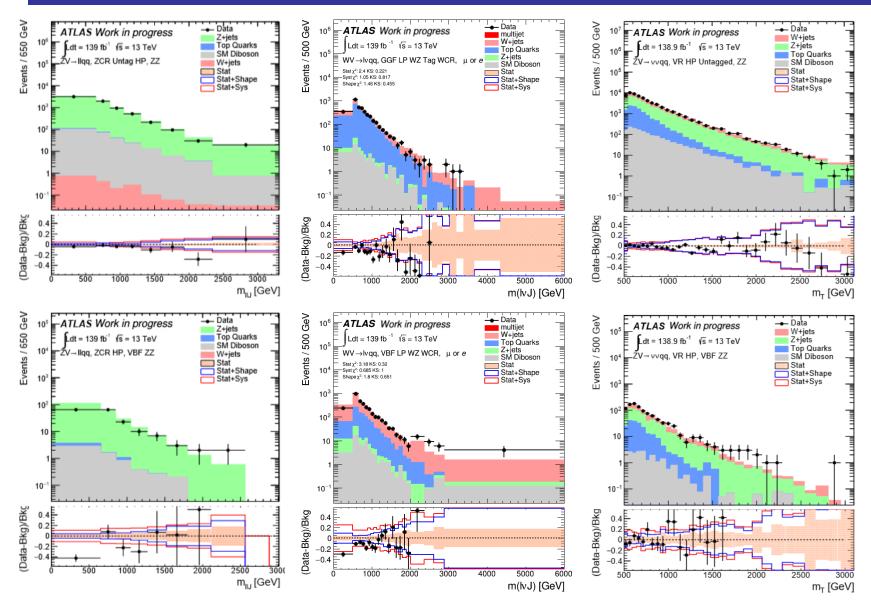
- Electron and muon share background normalization.
- Electron and muon MJ normalization is uncorrelated

Fitting result is promising


Sample	Yield	R.U.	SF
Top&W	645040 ± 1971.68	0.31%	0.998
Z&VV	24075.9	fix	ed
MJ_el	24156.3 ± 1224.62	5.06%	3.973
MJ_mu	35528.5 ± 923.94	2.60%	9.019

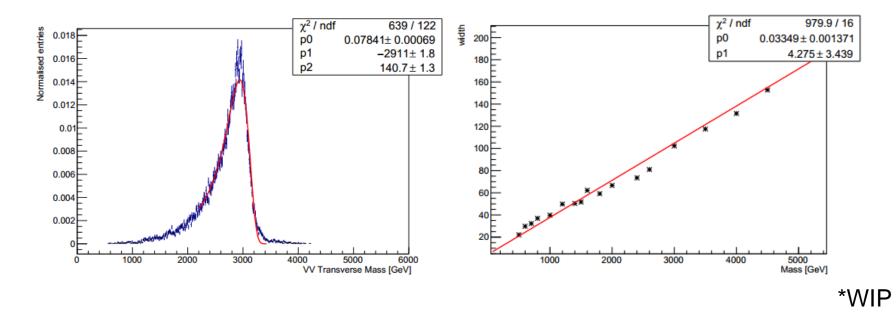
Zhongyukun Xu

Expermental Systematics: lepton, jets, MET, b-tagging, lumi
 Background modeling uncertainties:-Vjets, MJ, VV, singlet, ttbar
 Signal modeling

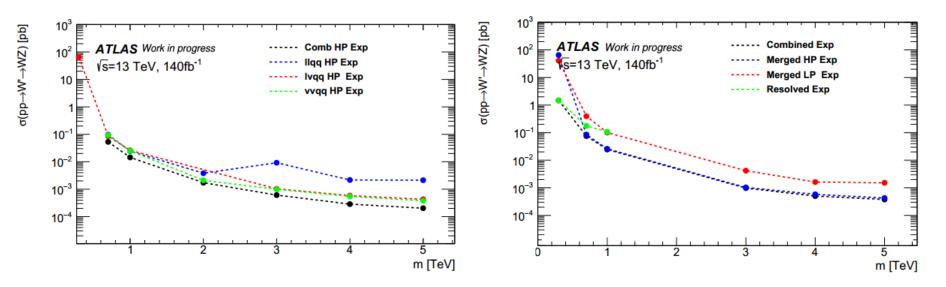

ttbar modeling:

Variation of hadronization: Pythia8 -> Herwig7 Variation of generator: Powheg -> AcerMC@NLO Variation of ISR and FSR: different weight

More details in backup


Prefit CR Distributions

Fit strategy


Fit binning:

- Signal resolution is checked for each mass point
 - > Resolution defined as σ of Gaussian fit for 1 and 2 lepton signals
 - For 0 lepton used width from fit with Landau function
- Bin edges defined such that:
 - Width is larger than resolution
 - Number of background events is greater than 0
 - Fractional error on the background is less than 75%*

Fit result

Working on Blinded fit (CR/VR only) result

Both combined and individual fit result looks fine, but llqq 3TeV points result is under investigation.

Summary

- DBL VV Semileptonic analysis with Full Run 2 data.
- Analysis strategy stays similar with 2015+16 analysis but with further optimization.
- Most parts of analysis (selection optimization, systematics study, fake lepton estimation) finalized.
- Statistical study is under investigation.
- Aiming for publication soon

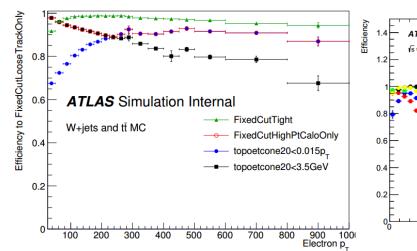
Backup

Lepton selection

1-lepton:

Tight ID, pT > 7GeV, $|\eta| < 2.47$ (2.5)

■ 2-lepton:


Loose ID, pT > 30 GeV, |η|<2.47 (2.5)

Isolation:

FixedCutHighPtCaloOnly

FCLoose

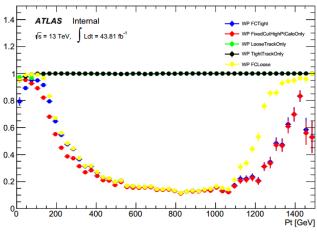

(pT <100GeV)

Table 3: Summary of electron selection					
Feature	Loose	Tight			
Pseudorapidity range	$ \eta < 2.47$				
Energy calibration	"es2017_R21_v0" (ESI	Model)			
Transverse momentum	$p_{\rm T} > 7 {\rm GeV}$	> 30 GeV			
Object quality [44]	Not from a bad calorimeter cluster (BADCLUSELECTRON)				
Object quanty [44]	Remove clusters from regions with EMEC bad HV (2016 data only)				
Track to vertex association	$ d_0^{BL}(\sigma) < 5$				
Track to vertex association	$ \Delta z_0^{BL} \sin \theta < 0.5 \text{ mm}$				
Identification	Loose	Tight			
Isolation	FCLoose at $p_{\rm T} < 100 {\rm GeV}$	FixedCutHighPtCaloOnly			
	and no isolation requirement at $> 100 \text{GeV}$				

Table 4: Summary of muon selections

Criteria	Loose	Tight		
Pseudorapidity range	$ \eta < 2.5$			
Momentum Calibration	Sagitta Correction Used			
Transverse momentum	$p_{\rm T} > 7 { m ~GeV}$	$p_{\rm T} > 30 { m GeV}$		
d ₀ Significance Cut	$ d_0^{BL}(\sigma) < 3$			
z ₀ Cut	$ z_0^{BL}\sin\theta < 0.5 \text{ mm}$			
Selection Working Point	Loose	Medium		
Isolation Working Point	FCLoose at $p_{\rm T} < 100 {\rm GeV}$	FixedCutTightTrackOnly		
	and no isolation requirement at $> 100 \text{GeV}$			

Zhongyukun Xu

Jet selection

- Small-R jet selection
- AntiKt4EMTopoJets
- |η|<2.5
- Medium JVT WP
- Large-R jet selection
- AntiKt10TrackCaloClusterTri mmedPtFrac5SmallR20Jets
- |η|<2.0
- pT>200GeV, mass > 50GeV
- WZ Tagger

Table 5. Summary of sman-K jet selection and canoration			
Jet reconstruction parameters			
Parameter	Value		
algorithm	anti-k _T		
R-parameter		0.4	
input constituent		ЕМТоро	
Analysis Release Number		21.2.66	
CalibArea tag	00-04-81		
Calibration configuration	JES_data2017_2016_2015_Consolidated_EMTopo_2018_Rel21.config		
Calibration sequence (Data)	JetArea_Residual_EtaJES_GSC_Insitu_Smear		
Calibration sequence (MC)	JetArea_Residual_EtaJES_GSC_Smear		
	Selection requ	irements	
	"Signal" jet	"VBF" jet	
Observable	Requirement		
Jet cleaning	LooseBad		
BatMan cleaning	No		
p _T	>30 GeV		
η	<2.5	< 4.5	
JVT	> 0.59 for $p_{\rm T}$ <120 GeV and $ \eta $ < 2.4		
	> 0.11 for $p_{\rm T}$ <120 GeV and 2.4 < $ \eta $ < 2.5		
	(Medium working point)		
<i>b</i> -tagging (See Sec. 4.7)	Tagged, or not tagged Not tagged		

Table 6: Summary of large-R jet selection and calibration

Jet reconstruction parameters			
Value			
anti- k_T			
1.0			
TrackCaloCluster			
Trimming			
0.05			
0.2			
21.2.47			
JES_MC16recommendation_FatJet_TCC_JMS_calo_30Oct2018.config			
EtaJES_JMS			
Selection requirements			
Requirement			
>200 GeV			
<2.0			
> 50 GeV			
SmoothedWZTagger			
Working point			
W/Z Optimized working point			

Table 5: Summary of small-R jet selection and calibration

MET reconstruction:

 reconstructed by negative sum of the all physics objects and ID tracks not associated with them

B-tag requirement:

- MV2c10 algorithm
- Working point 85%
- Variable-radius jet
 For boosted b-tag
 pT-dependent cone size
 |η|<2.5

Table 8: Summary of $E_{\rm T}^{\rm miss}$ reconstruction configuration.

MET reconstruction parameters			
Parameter Value			
Algorithm	Calo-based		
Soft term	Track-based (TST)		
MET operating point	Tight		

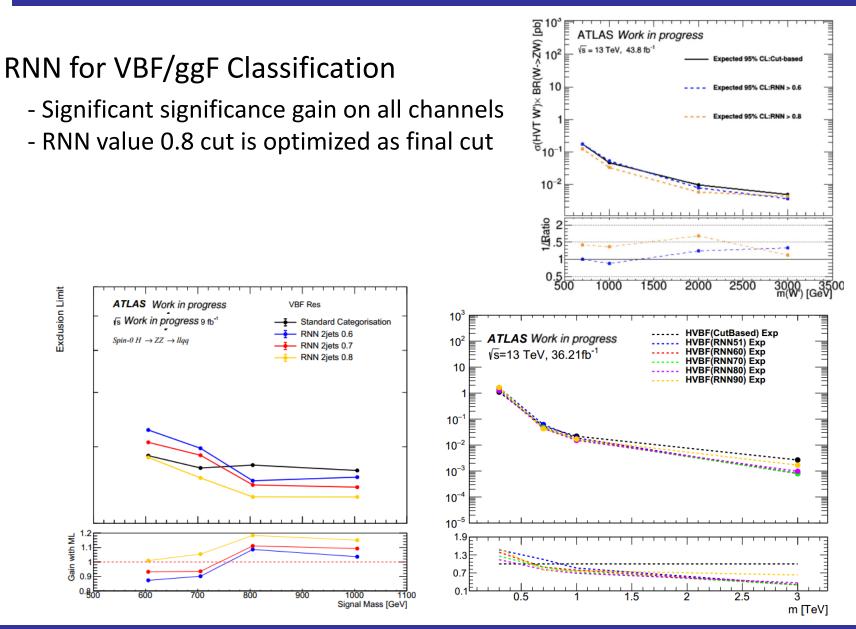
Table 9: Summary of *b*-tag requirement in the resolved category

Jet collection	AntiKt4EMTopoJets
Jet selection	"Signal jet" selection in Table 5
Algorithm	MV2c10
Operating point	Fixed
	Eff = 85%
CDI	boosted-CDI-30-07-2019

Table 10: Summary of *b*-tag requirement in the merged category.

Jet collection	AntiKtVR30Rmax4Rmin02
Algorithm	MV2c10
Operating point	Fixed
	Eff = 85%
CDI	boosted-CDI-30-07-2019

Table 7: Summary of VR track jet selection.


Jet reconstruction parameters			
Parameter	Value		
algorithm	anti-k _T		
R-parameter	_		
input constituent	TrackParticles		
Observable	Requirement		
p _T	>10 GeV		
η	<2.5		

No calibration is available for VR track jets.

Overlap removal

 OR is proceeded to get rid of double counting object (reconstruct same energy deposit as multiple objects)

Reject	Against	Criteria
electron	electron	shared track, $p_{T,1} < p_{T,2}$
muon	electron	is calo-muon and shared ID track
electron	muon	shared ID track
jet	electron	$\Delta R < 0.2$
electron	jet	$\Delta R < 0.4$
jet	muon	NumTrack < 3 and (ghost-associated or $\Delta R < 0.2$)
muon	jet	$\Delta R < \min(0.4, 0.04 + 10 \text{GeV/MuPt})$
fat-jet	electron	$\Delta R < 1.0$

Zhongyukun Xu

Expermental Systematics

- Electron: ES,ER, SFs
- Muon: pT scale, pT resolution, SFs

- MET: Soft term, jet track
- Small-R jets: JES JER
- Large-R jets: pT scale JER
- B-tagging: Flavour tagging SF
- Lumi, PileUp

Description

Energy scale

Trigger

 $p_{\rm T}$ scale

Soft term

Soft term

Soft term

Energy resolution

ID efficiency SF

 $p_{\rm T}$ resolution MS

 $p_{\rm T}$ resolution ID

Isolation efficiency SF

Isolation efficiency SF

Jet track uncertainties

Isolation efficiency SF

Reconstruction efficiency SF

 $p_{\rm T}$ scale (charge dependent)

 $p_{\rm T}$ scale (charge dependent)

Muon reco & ID efficiency SF

Track-to-vertex association efficiency SF

Track-to-vertex association efficiency SF

Source

Electrons

Electrons

Electrons

Electrons

Electrons

Electrons

Muons

Muons

Muons

Muons

Muons

Muons

Muons

Muons

Muons Muons

Muons

Muons

Muons

MET

MET

MET

MET

	Source	Description	Analysis Name Notes	
atics	Small-R Jets	JES category reduction	JET_CR_JET_BJES_Response	-
	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Detector1	
	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Detector2	
	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Mixed1	
	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Mixed2	
resolution, SFs	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Mixed3	
	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Modelling1	
track	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Modelling2	
TUCK	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Modelling3	
ר ר	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Modelling4	
1	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Statistical1	
	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Statistical2	
le JER	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Statistical3	
	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Statistical4	
raging SE	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Statistical5	
tagging SF	Small-R Jets	JES category reduction	JET_CR_JET_EffectiveNP_Statistical6	
	Small-R Jets	JES category reduction	JET_CR_JET_Flavor_Composition	
	Small-R Jets Small-R Jets	JES category reduction	JET_CR_JET_Flavor_Response	
		JES category reduction	JET_CR_JET_Pileup_OffsetMu	
	Source	Description	Analysis Name	N
	Large-R Jets Large-R Jets	$p_{\rm T}$ scale $p_{\rm T}$ scale	FATJET_Medium_JET_Rtrk_Baseline_pT FATJET_Medium_JET_Rtrk_Closure_pT	
	Large-R Jets	$p_{\rm T}$ scale	FATJET_Medium_JET_Rtrk_Modelling_pT	
	Large-R Jets	$p_{\rm T}$ scale	FATJET_Medium_JET_Rtrk_TotalStat_pT	
Analysis Name	Large-R Jets	p _T scale	FATJET_Medium_JET_Rtrk_Tracking_pT	
EG_SCALE_ALL	I Large-R Jets B-tagging	JER Flavor tagging scale factors	FATJET_JER FT_EFF_Eigen_B_0_AntiKt4EMTopoJets	+
EG RESOLUTION ALL	B-tagging	Flavor tagging scale factors		
EL_EFF_Trigger_TOTAL_1NPCOR_PLUS_UNCOR	B-tagging	Flavor tagging scale factors		
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR	B-tagging	Flavor tagging scale factors		
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR	B-tagging B-tagging	Flavor tagging scale factors Flavor tagging scale factors		
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR	B-tagging	Flavor tagging scale factors		
MUONS SCALE	B-tagging	Flavor tagging scale factors		
MUON_SAGITTA_RHO	B-tagging	Flavor tagging scale factors		
MUON_SAGITTA_RESBIAS	B-tagging B-tagging	Flavor tagging scale factors Flavor tagging scale factors		
MUONS_MS	B-tagging	Flavor tagging scale factors		
MUONS ID	B-tagging	Flavor tagging scale factors		
MUON_ISO_SYS	B-tagging	Flavor tagging scale factors		
MUON_ISO_STAT	B-tagging B-tagging	Flavor tagging scale factors Flavor tagging scale factors		
MUONS_EFF_STAT	B-tagging	Flavor tagging scale factors		
MUONS_EFF_STAT_LOWPT	B-tagging	Flavor tagging scale factors	FT_EFF_Eigen_Light_1_AntiKtVR30Rmax4Rmin02TrackJets	
MUONS_EFF_SYST	B-tagging B-tagging	Flavor tagging scale factors		
MUONS_EFF_SYST_LOWPT	B-tagging B-tagging	Flavor tagging scale factors Flavor tagging scale factors		
MUON_TTVA_SYS	B-tagging	Flavor tagging scale factors		
MUON_TTVA_STAT	B-tagging	Flavor tagging scale factors	FT_EFF_extrapolation_AntiKt4EMTopoJets	
MET_SoftTrk_ResoPerp	B-tagging	Flavor tagging scale factors		
MET_SoftTrk_ResoPara	B-tagging B-tagging	Flavor tagging scale factors Flavor tagging scale factors	FT_EFF_extrapolation_from_charm_AntiKt4EMTopoJets FT_EFF_extrapolation_from_charm_AntiKtVR30Rmax4Rmin02TrackJets	
MET_SoftTrk_Scale	Pileup reweightin		r extrapolation_from_enarm_Antikty K50Kinax4Kinin021FackJets	+
MET_JetTrk_Scale	Luminosity	LumiNP		

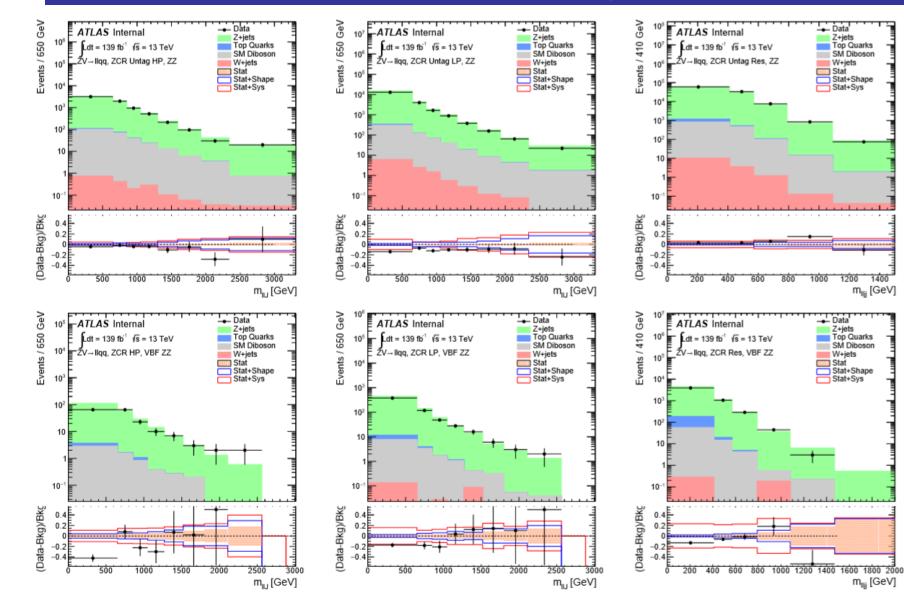
Zhongyukun Xu

Background modeling uncertainties

- ttbar
- W/Z jets
- Multijet
- VV

Signal modeling

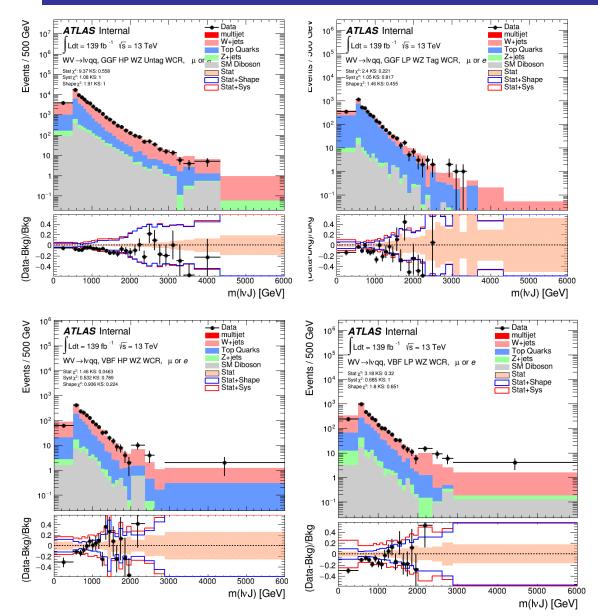
Source	Description	Analysis Name	Notes
Modeling	Signal	Signal_PDF	
Modeling	Signal	Signal_ISR_FSR	

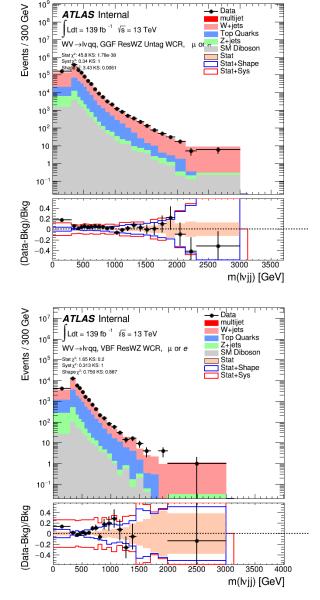

Source	Description	Analysis Name	Notes
Modeling	tī aMCaNLO	ttbar_aMC	Generator
Modeling	tī Herwig	ttbar_PH7	Parton Shower
Modeling	tī ISR	ttbar_ISR	
Modeling	tī FSR	ttbar_FSR	
Modeling	W/Z +jets modeling μ_F and μ_R	Vjets_RFScale_lvqq_Merg	
Modeling	W/Z +jets modeling μ_F and μ_R	Vjets_RFScale_lvqq_Res	
Modeling	W/Z+jets modeling PDF	Vjets_PDFVar_lvqq_Merg	
Modeling	W/Z+jets modeling PDF	Vjets_PDFVar_lvqq_Res	
Modeling	W/Z+jets modeling PDF	Vjets_CT14_lvqq_Merg	
Modeling	W/Z+jets modeling PDF	Vjets_CT14_lvqq_Res	
Modeling	W/Z+jets modeling PDF	Vjets_MMHT_lvqq_Merg	
Modeling	W/Z+jets modeling PDF	Vjets_MMHT_lvqq_Res	
Modeling	W/Z +jets modeling α_S	Vjets_AlphaS_lvqq_Merg	
Modeling	W/Z +jets modeling α_S	Vjets_AlphaS_lvqq_Res	
Modeling	W/Z+jets modeling MadGraph	Vjets_GenMG_lvqq_Merg	
Modeling	W/Z+jets modeling MadGraph	Vjets_GenMG_lvqq_Res	
Modeling	multijet modeling	MJ_W_lvqq_Res	
Modeling	multijet modeling	MJ_ttbar_lvqq_Res	
Modeling	multijet normalization	XS_MJ_lvqq_Res	

Vjets Stat All CT16 H73cate Newselfust Mater FDVW Alphas Events All All CT14 F73cate Narmativation MBHT POPVar Alphad Events 10⁹ 10⁷ 10⁶ 10⁵ 10⁵ 10³ 10² 10² 10^{8} 10^{7} 10^{6} 10^{5} 10^{4} 10^{3} 10^{2} 10Ratio to Nom Ratio to Nom 1.5 1.5E 0.5 0.5 0 ٥l Envelope Envelope 1.4 1.4 1.2 1.2 5000 m(VV) [GeV] 2000 3000 4000 500 1000 1500 2000 ō 1000 ō 2500 3000 m(VV) [GeV] (a) (b) Events Events 10⁶ 10⁵ 10⁴ 10³ 10² 10² 10⁷ 10⁵ 10⁴ 10² 10² 10² 10-10-Ratio to Nom Ratio to Nom 1.5 1.5E Hillimone nummum. 0.5E 0.5E ٥l Envelope Envelope 1.4 1.4 1.2 1.2 1000 2000 3000 4000 5000 6000 m(VV) [GeV] 500 1000 1500 2000 2500 3000 m(VV) [GeV] ō ō

Zhongyukun Xu

SDU & UM

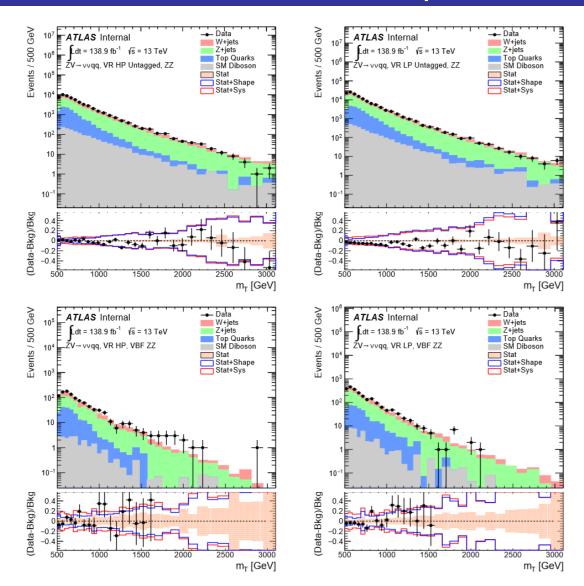

Prefit Distributions: 2-lepton ZCR

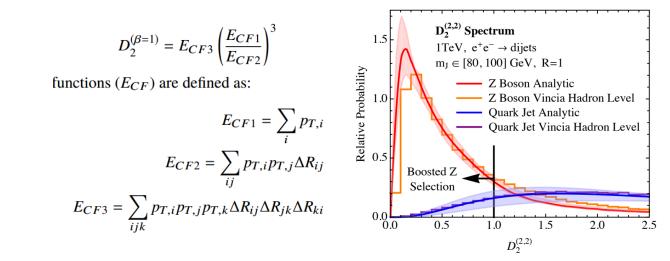


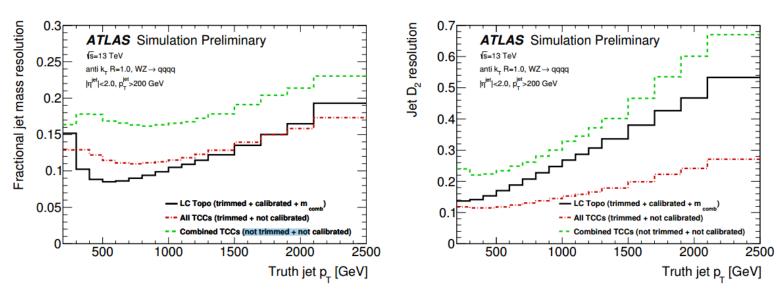
SDU & UM

1400

Prefit Distributions: 1-lepton WCR

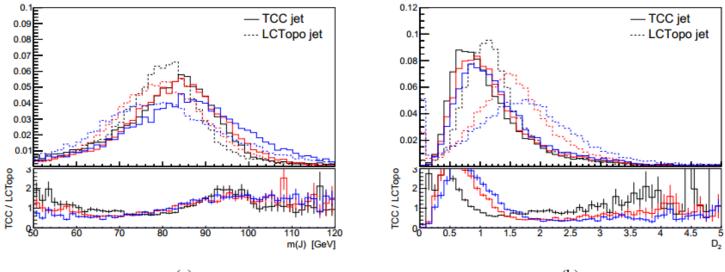



Zhongyukun Xu

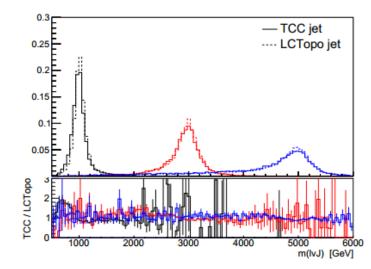

SDU & UM

Prefit Distributions: 0-lepton VCR

D2 cut



Zhongyukun Xu


SDU & UM

D2

Zhongyukun Xu

SDU & UM