Heavy flavor rare decays from CMS

Peking University

Chuqiao Jiang

October 25, 2019

CLHCP2019 @ Dalian

Outline

Motivation

CMS rare B-decay analyses:

Analysis of the decay: $B_s^0 \rightarrow \mu^+ \mu^- \& B^0 \rightarrow \mu^+ \mu^-$

CMS-PAS-BPH-16-004

Angular analysis of the decay: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Phys.Lett. B781 (2018) 517-541

Angular analysis of the decay: $B^{\scriptscriptstyle +} \rightarrow K^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$

Phys. Rev. D98 (2018) no. 11, 112011

Motivation

- Phenomena beyond the SM can become manifest indirectly, by modifying the production and decay properties of SM particles.
- In SM, flavor-changing neutral current (FCNC) is forbidden at tree level and occurs through higher-order processes.
- $b \rightarrow s \ l^+l^-$ FCNC process diagram:

- The amplitudes may interfere with non-SM particle contributions.
- The transition can probe NEW particles and processes.
- Sensitive to possible physics phenomena beyond the SM(BSM).

Analysis of the decay: $B_s^0 \rightarrow \mu^+ \mu^- \& B^0 \rightarrow \mu^+ \mu^-$

Leptonic B meson decays offer excellent opportunities to perform precise tests of the standard model. The decays proceed only via loop diagrams and are also helicity suppressed.

★ Measuring B_s⁰ → µ⁺µ⁻ effective lifetime, B(B_s⁰ → µ⁺µ⁻) and B(B⁰ → µ⁺µ⁻)
★ SM prediction values: $\bar{\mathcal{B}}(B_s^0 \to \mu^+ \mu^-)_{\text{SM}} = (3.66 \pm 0.14) \times 10^{-9} \quad \text{SM expectation: 4-5% theoretical uncertainty!}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-)_{\text{SM}} = (1.03 \pm 0.05) \times 10^{-10} \quad \bar{\mathcal{B}}(B_s^0 \to \mu^+ \mu^-): \text{ decay time-integrated } \mathcal{B}$ $\tau_{B_s^0} = 1.509 \pm 0.004 \text{ ps}$

Analysis overview

- using a data sample of proton-proton collisions accumulated by the CMS experiment in 2011, 2012, and 2016.
- Analysis strategy:
- 1) strict muon identification with boosted decision tree
- 2) tight candidate selection with (another) boosted decision tree
- 3) unbinned (extended) maximum likelihood fits to selected events and get values of interests
- Reconstructed decays for this analysis:
- $B \rightarrow \mu^+ \mu^-$: signal channel
- $B \rightarrow J/\psi K^+$: normalization channel
- $B_s^{0} \rightarrow J/\psi \phi$: control channel
- Separation of data into two 'channels'.
 Central channel & forward channel:

Year	central	forward
2011	$0 < \eta_{\mu}^{f} < 1.4$	$1.4 < \eta^{f}_{\mu} < 2.1$
2012	$0 < \eta_{\mu}^{f} < 1.4$	$1.4 < \eta_{\mu}^{\rm f} < 2.1$
2016	$0 < \eta^{\mathrm{f}}_{\mu} < 0.7$	$0.7 < \eta_{\mu}^{ m f} < 1.4$

CLHCP2019 @ Dalian

Measuring of BFs and $\tau_{\mu+\mu-}$

Branching fractions

- 3D fit for $B(B_s^0 \rightarrow \mu^+ \mu^-) \& B(B^0 \rightarrow \mu^+ \mu^-)$: $P(m_{\mu\mu}; \sigma(m_{\mu\mu})) \times P(\sigma(m_{\mu\mu})/m_{\mu\mu}) \times P(\mathcal{C})$ (1)
- dimuon mass $m_{\mu\mu}$
- per-event dimuon mass resolution $\sigma(m_{\mu\mu})$
- C: binary distribution for dimuon bending configuration $C(\pm 1)$: the two muons bending towards (away from) each other
- Measurement of $B(B_s^0 \rightarrow \mu^+ \mu^-)$ relative to normalization channel:

$$\bar{\mathcal{B}}(B_s^0 \to \mu^+ \mu^-) = \frac{n_{B_s^0}^{\text{obs}}}{N(B^+ \to J/\psi K^+)} \frac{\varepsilon_{B^+}^{\text{tot}}}{\varepsilon_{B_s^0}^{\text{tot}}} \frac{f_u}{f_s} \mathcal{B}(B^+ \to J/\psi [\mu^+ \mu^-] K)$$
(2)

Effective lifetime

$$P(m_{\mu+\mu-},t;\sigma_{t}) = N_{\text{sig}}P_{\text{sig}}(m_{\mu+\mu-})T_{\text{sig}}(t;\sigma_{t})\varepsilon_{\text{sig}}(t) + N_{\text{comb}}P_{\text{comb}}(m_{\mu+\mu-})T_{\text{comb}}(t;\sigma_{t}) + N_{\text{peak}}P_{\text{peak}}(m_{\mu+\mu-})T_{\text{peak}}(t;\sigma_{t})\varepsilon_{\text{peak}}(t) + N_{\text{semi}}P_{\text{semi}}(m_{\mu+\mu-})T_{\text{semi}}(t;\sigma_{t})\varepsilon_{\text{semi}}(t),$$
(3)

• Two methods: (1) 2-D UML fit; (2) 1-D ML fit

Results of branching fractions

Branching fractions from 3D UML fit:

 $\overline{\mathcal{B}}(B_s^0 \to \mu^+ \mu^-) = [2.9^{+0.7}_{-0.6}(\exp) \pm 0.2(f_s/f_u)] \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (0.8^{+1.4}_{-1.3}) \times 10^{-10}$

★ B(B⁰ → μ⁺μ⁻) upper limit $\mathcal{B}(B^{0} → \mu^{+}\mu^{-}) < 3.6 \times 10^{-10}$ (95% CL) $\mathcal{B}(B^{0} → \mu^{+}\mu^{-}) < 3.1 \times 10^{-10}$ (90% CL)

• Figures: Invariant mass distributions with the fit projection overlays for the branching fraction results (left); Likelihood contours for the fit to the branching fractions (right).

Result of effective lifetime

- Effective lifetime $\tau_{\mu+\mu-}$ $\tau(B_s^0 \rightarrow \mu^+\mu^-) = 1.70^{+0.61}_{-0.44} \text{ ps}$
 - Figures: Invariant mass (left) and proper decay time (right) distributions

Angular analysis of the decay: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Using 20.5 fb⁻¹ of 8 TeV pp data taken in 2012
- The process can be fully described by the three angles (θ_ℓ, θ_κ, φ) and the dimuon invariant mass squared q².
- Robust SM calculation of several angular parameters, A_{FB}, F_L, P₁ and P₅', are available for much of the phase space.
- LHCb reported a discrepancy larger than 3 standard deviations with respect to the SM for P₅'.
- The differential decay formula:

 $\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_l\mathrm{d}\cos\theta_K\mathrm{d}q}$

 $A_{\rm S}^5$: nuisance parameter P_1, P_5' : measured parameters $F_{\rm L}, F_{\rm S}, A_{\rm s}$: fixed from previous CMS measurement

S-wave and S&P-wave interference

$$\frac{9}{\cos\theta_{\rm K}d\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[(F_{\rm S} + A_{\rm S}\cos\theta_{\rm K}) \left(1 - \cos^2\theta_l\right) + A_{\rm S}^5 \sqrt{1 - \cos^2\theta_{\rm K}} \right] \right\}$$

$$\frac{\sqrt{1 - \cos^2\theta_l}\cos\phi}{\sqrt{1 - \cos^2\theta_l}\cos\phi} + (1 - F_{\rm S}) \left[2F_{\rm L}\cos^2\theta_{\rm K} \left(1 - \cos^2\theta_l\right) + \frac{1}{2}F_{\rm L}(1 - \cos^2\theta_l) \right] + \frac{1}{2}F_{\rm L}(1 - F_{\rm L}) \left(1 - \cos^2\theta_{\rm K}\right) \left(1 + \cos^2\theta_l\right) + \frac{1}{2}F_{\rm L}(1 - F_{\rm L}) \right] \left(1 - \cos^2\theta_{\rm K}\right) \left(1 - \cos^2\theta_l\right) \cos 2\phi + 2F_{\rm S}\cos\theta_{\rm K}\sqrt{F_{\rm L}}(1 - F_{\rm L}) \right] \left(1 - \cos^2\theta_{\rm K}\sqrt{1 - \cos^2\theta_l}\cos\phi} \right] \right\}$$

$$\frac{1}{\sqrt{1 - \cos^2\theta_{\rm K}}\sqrt{1 - \cos^2\theta_l}\cos\phi} + 2F_{\rm S}\cos\theta_{\rm K}\sqrt{F_{\rm L}}(1 - F_{\rm L}) \right)}{\sqrt{1 - \cos^2\theta_{\rm K}}\sqrt{1 - \cos^2\theta_l}\cos\phi} + 2F_{\rm S}\cos\theta_{\rm K}\sqrt{F_{\rm L}}(1 - F_{\rm L}) \right]$$

Fit PDF

Probability density function

$$p.d.f.(m,\theta_{K},\theta_{l},\Phi) = \underbrace{Y_{S}^{C}} \begin{bmatrix} S^{C}(m) S^{a}(\theta_{K},\theta_{l},\phi) e^{C}(\theta_{K},\theta_{l},\phi) & \text{Correctly tagged events} \\ \\ \xrightarrow{Mistag fraction} & + \underbrace{f^{M}}_{1-f^{M}} S^{M}(m) S^{a}(-\theta_{K},-\theta_{l},\phi) e^{M}(\theta_{K},\theta_{l},\phi) \\ & + \underbrace{Y_{B} B^{m}(m) B^{\theta_{K}}(\theta_{K}) B^{\theta_{l}}(\theta_{l}) B^{\phi}(\phi)}, & \text{Background} \\ \end{aligned}$$

Signal contribution: mass shape (double gaussian), decay rate, and 3D efficiency function Background contribution: mass shape (exponential) and different

degrees polynomial functions for each angular variable.

Analysis overview

- Fitting strategy:
- Parameters are extracted from un-binned extended maximum likelihood fit in each bin: $m(K^+\pi^-\mu^+\mu^-)$, $\cos\theta_l$, $\cos\theta_K$, φ
- Fit performed in two steps:
 - 1. Fit sidebands to determine angular background shape, fixed in the next step;
 - 2. Fit whole mass spectrum, 5 free parameters, A_5^5 , P_1 , P_5' , yields.
- Validation with data control channels:
- Control channels: $B^0 \rightarrow K^{*0} J/\psi(\mu^+ \mu^-)$, $B^0 \rightarrow K^{*0} \psi'(\mu^+ \mu^-)$
- To check efficiency determination;
 - ✓ Fit performed with F_L free to float. F_L measured agrees with PDG value.

Systematic uncertainty

Systematic uncertainty	$P_1(10^{-3})$	$P_5'(10^{-3})$	
Simulation mismodeling	1 – 33	10 - 23	
Fit bias	5 – 78	10 - 119	
MC statistical uncertainty	29 – 73	31 – 112	
Efficiency	17 - 100	5 — 65	
$K\pi$ mistagging	8 - 110	6 - 66	
Background distribution	12 - 70	10 - 51	
Mass distribution	12	19	
Feed-through background	4 - 12	3 - 24	
$\mathbf{F}_{\mathbf{L}}, \mathbf{F}_{\mathbf{S}}, \mathbf{A}_{\mathbf{s}}$ uncertainty propagation	0 - 126	0 - 200	
Angular resolution	2 - 68	0.1 - 12	
Total	60 - 220	70 - 230	

Results: P₁ and P₅'

The events are fit in seven q^2 bins from 1 to 19 GeV², yielding 1397 signal events in total.

The measured P_1 and P'_5 are consistent with the SM predictions and previous measurements within the uncertainties.

Angular analysis of the decay: $B^+ \rightarrow K^+ \mu^+ \mu^-$

- ♦ Using 20.5 fb⁻¹ of 8 TeV pp data taken in 2012 Control channels: $B^+ \rightarrow K^+ J/\psi(\mu^+ \mu^-)$, $B^+ \rightarrow K^+ \psi'(\mu^+ \mu^-)$
- The decay for the process $B^+ \to K^+\,\mu^+\,\mu^-$ can be described by $\cos\!\theta_l$ and $q^2 = (m_{\mu^+\mu^-})^2$
- The differential decay formula:

$$\frac{1}{\Gamma} \frac{d\Gamma[B^+ \to K^+ \mu^+ \mu^-]}{d\cos\theta_l} = \frac{3}{4} (1 - F_H) \left(1 - \cos^2\theta_l\right) + \frac{1}{2} F_H + A_{FB} \cos\theta_l$$
$$0 \le F_H \le 3, A_{FB} \le \min(1, F_H/2)$$

 θ_l : $l = \mu$, the angle between the $\mu^+(\mu^-)$ and the K⁻(K⁺) in the rest frame of the dimuon system. A_{FB} : $\mu^+ \mu^-$ forward-backward asymmetry.

 F_H : is a measure of the contribution from pseudoscalar, scalar and tensor amplitudes to the decay width Γ.

14

Fit PDF

PDF(m, $\cos\theta_l$) = $Y_S \cdot S(m) \cdot S(\cos\theta_l) \cdot \varepsilon(\cos\theta_l) + Y_B \cdot B(m) \cdot B(\cos\theta_l)$ Signal contribution: mass shape (double Gaussian), decay rate, and efficiency function (6th order polynomial). Background contribution: mass shape (exponential) and different degrees polynomial plus a Gaussian function for each angular variable.

Analysis overview

Fitting strategy:

Parameters are Extracted from un-binned extended maximum likelihood fit in each q² bin: M(K⁺μ⁺μ⁻), cosθ_l

Validation:

- with resonant control regions
- with MC samples

Systematic uncertainty

Systematic uncertainty	$A_{\rm FB}~(\times 10^{-2})$	$F_{\rm H}~(\times 10^{-2})$
Finite size of MC samples	0.4 - 1.8	0.9–5.0
Efficiency description	0.1 - 1.5	0.1 - 7.8
Simulation mismodeling	0.1 - 2.8	0.1 - 1.4
Background parametrization model	0.1 - 1.0	0.1 - 5.1
Angular resolution	0.1 - 1.7	0.1–3.3
Dimuon mass resolution	0.1 - 1.0	0.1 - 1.5
Fitting procedure	0.1–3.2	0.4–25
Background distribution	0.1–7.2	0.1–29
Total systematic uncertainty	1.6–7.5	4.4–39

Results: A_{FB} and F_H

- The events are fit in seven q² bins from 1 to 22 GeV², yielding 2286 signal events in total.
- The measured A_{FB} and F_H show good agreement with the SM predictions within the uncertainties. No clear indication of new physics beyond the SM could be drawn from present results.

- FCNC rare decays are good probes of physics beyond standard model.
- CMS is a good environment to study rare B-decays.
- ★ The three measurements: $B_s^0 \rightarrow \mu^+ \mu^- \& B^0 \rightarrow \mu^+ \mu^-$; $B^0 \rightarrow K^{*0} \mu^+ \mu^-$; $B^+ \rightarrow K^+ \mu^+ \mu^-$, which are introduced above showed results that agree with standard model within the uncertainties.
- Further researches will be made by analysing Run2 data.

The End

Thank you!

Backup

Uncertainties of the decay: $B_s^0 \rightarrow \mu^+ \mu^- \& B^0 \rightarrow \mu^+ \mu^-$

• Uncertainties dominated by small signal sample size

 relative errors for 	$\mathcal{B}(B^0_s \to$	$\mu^{+}\mu^{-}),$	absolute	for $ au_{\mu^+\mu^-}$
---	-------------------------	--------------------	----------	------------------------

		F* F*	
Source	$\overline{\mathcal{B}}(B^0_s \to \mu^+ \mu^-) \ [\%]$	$ au_{\mu^+\mu^-}$ [ps]	
		2D UML	sPlot
Kaon tracking	2.3 – 4	_	_
Normalization yield	4	_	_
Background yields	1	0.03	(*)
Production process	3	_	_
Muon identification	3	_	_
Trigger	3	_	_
Efficiency (data/MC simulation)	5 — 10	_	(*)
Efficiency (functional form)	_	0.01	0.04
Efficiency lifetime dependence	1 — 3	(*)	(*)
Era dependence	5 — 6	0.07	0.07
BDT discriminator threshold	_	0.02	0.02
Silicon tracker alignment	_	0.02	_
Finite size of MC sample	_	0.03	_
Fit bias	_	_	0.09
C-correction	—	0.01	0.01
Total systematic uncertainty	$\binom{+0.3}{-0.2} \times 10^{-9}$	0.09	0.12
Total uncertainty	$\binom{+0.7}{-0.6} \times 10^{-9}$	$+0.61 \\ -0.44$	$+0.52 \\ -0.33$
*) included in other item	HCP2019 @ Dalian		

21

Data and MC samples for angular analysis of the decay: $B^+ \rightarrow K^+ \mu^+ \mu^-$

- Datasets-2012 (~20.5 fb⁻¹) **
- /DoubleMuParked/Run2012A-22Jan2013-v1/AOD
- /MuOniaParked/Run2012Bullet22Jan2013-v1/AOD
- /MuOniaParked/Run2012C-٠ 22Jan2013-v1/AOD
- /MuOniaParked/Run2012D-• 22Jan2013-v1/AOD
- ✤ Signal MC-8TeV (~3296.8 fb⁻¹)
- /Bu2MuMuK_TuneZ2star_8TeV_ • Pythia6/Summer12 DR53X-PU_RD2_START53_V19Fv1/AODSIM

Normalization MC-8TeV

- ψ(2S)K⁺ (~212.5 fb⁻¹) /BuToPsiK_KFilter_TuneZ2star_SVS_8TeVpythia6-evtgen/Summer12_DR53XPU_ RD2_START53_V19F-v1/AODSIM
- J/ψ(2S)K⁺ (~18.6 fb⁻¹)
- /BuJpsiK_TuneZ2star_8TeV_Pythia6/Summer12 DR53X-PU_RD2_START53_V19F-v1/AODSIM

Background MC-8TeV

- ψ(μ⁺ μ⁻)X (~9.8 fb⁻¹)
- /BpToPsiMuMu_2MuPtEtaFilter_8TeV-pythia6evtgen/Summer12_DR53XPU_S10_START53_V7 Av1/AODSIM
- K^{*0}μ⁺μ⁻ (~5951.1 fb⁻¹)

/BdToKstarMuMu_EtaPtFilter_8TeV-pythia6evtgen/Summer12_DR53XPU_RD2_START53_V 19F-v1/AODSIM

CLHCP2019 @ Dalian

Systematic uncertainty of the decay: $B^+ \rightarrow K^+ \mu^+ \mu^-$

Finite size of MC samples:

Generating 200 sets of efficiency with parameters varied in multi-Gaussian phase space.

- Efficiency description:
- Simulation mismodeling:
- Background parametrization model:
- ✤ Angular resolution:

Propagation of efficiency difference from reco'd or gen'd value($\cos \theta_{e}$) with signal MC.

Dimuon mass resolution:

Propagation of efficiency difference from reco'd or gen'd dimuon mass with signal MC.

***** Fitting procedure:

Fluctuations (RMS) from signal MC subsamples fitting results. Generate pseudo-experiments with signal from MC and background from data, fit with data fitting procedure.

Background distribution:

Use the pseudo-experiments above, change the background angular p.d.f. to one of the two data side bands, chose the larger deviation as systematic uncertainty.

Total systematic uncertainty:

All added in quadrature.