

中國科學院為能物記為完備 Institute of High Energy Physics Chinese Academy of Sciences

Single top production in association with a vector boson at CMS

Duncan Leggat Institute of High Energy Physics, Beijing on behalf of the CMS collaboration 25th October 2019

25th October 2019

Single top production at the LHC

Single top-quark production

Inclusive cross sections

σ [pb]

10²

10

Most top quarks produced strongly in *tt* pairs,

- Single top quarks produced in electroweak interactions.

Measuring is important:

- Direct $|V_{tb}|$ access
- Higgs and BSM backgrounds

q

q

 W^+

Sensitivity to new physics

April 2019

Single tops produced with a vector boson

The top quark's high mass makes its interactions with electroweak bosons of particular interest;

- Triple gauge boson coupling,
- Direct top coupling to electroweak,
- Non-standard couplings (FCNC)

All these channels and beyond are becoming accessible as the LHC data accumulates

All inclusive cross sections measured at CMS

tW, tZq & tγq Discussed in this talk

 $t\bar{t}$ – All processes' dominant background

Why study tW?

What is tW?

 The associated production of a single top quark with a W boson

Why do we study it?

- Direct probe of V_{tb}
- Sensitive to new physics
- Background to dilepton searches (e.g. H->WW)
- Provides additional measurements of top properties

In comparison to the other single top channels, tW at has scaled very favourably to the main tt background

σ [pb]	ttbar	t-channel	tW	s-channel
LHC @ 8TeV	252.89	84.69	22.2	5.24
LHC @ 13TeV	831.76	216.99	71.2	10.32
From 8 to 13TeV	3.3	2.6	3.2	1.9

LO diagrams

Duncan Leggat (IHEP)

tW dilepton cross section measurement

- Dilepton measurement using 35.9 fb⁻¹ (2016) *pp* data @ 13 TeV
- $e\mu$ channel only, opposite sign isolated lepton pair,
 - events with loose leptons vetoed,
- 3 regions defined based on jet requirements;
 - 1j1t signal region
 - 2j1t/2t tt-enriched control regions
- Backgrounds
 - *tt* dominant
 - small contribution of DY
 - Small because $e\mu$ channel only
 - backgrounds estimates from MC
- $t\bar{t}/tW$ interference treatment
 - DR scheme implemented in MC
 - DS MC included as systematic

Duncan Leggat (IHEP)

JHEP 10 (2018) 117

tW signal extraction

Distributions included in MLL fit:

Signal region (1j1t) BDT

- 11 input variables
 - 3 most discriminating variable shown right
- Loose jet information is most powerful discriminating factor

2j1t control region BDT

- 4 input variables
- Binning is sparser than signal region equivalent

2j2t control region

- Subleading jet p_T included in fit
- Heavily influenced by JES, helps constrain this systematic

JHEP 10 (2018) 117

tW measurement results

Result: σ_{tw} = 63.1 ± 1.8 (stat.) ± 6.4 (syst.) ± 2.1 (lumi) pb

Error of 11%, agrees with NNLO SM agreement within 5.3%

Dominant uncertainties:

- Lepton efficiencies (3.3%)
- Pileup (3.3%)
- Data statistics (2.8%)
- tt background normalisation (2.8%)

tZq production

Search for associated production of a single top quark with a Z boson, with one recoiling quark

Can produce single, double or triple lepton signatures

Predominantly occurs when t channel radiates a Z boson, but also includes 3 gauge coupling between W and Z

 $\sigma(tZq) = 160^{+7}_{-2}(scale)^{+11}_{-11}(PDF) \text{ fb}$ $\sigma(tZq) = 76^{+4}_{-1}(scale)^{+5}_{-5}(PDF) \text{ fb}$ Phys.Rev.D: 87(2013)11406

 σ (tl+l-q) = 8.2^{+0.59}-0.03</sub>(scale) fb based on leptonic top decay, and m_{ll} > 50 GeV using MC@NLO

Includes coupling of W to a Z boson or ll pair

Phys. Rev. Lett. 122 (2019) 132003 Measurement of tZq in trilepton channel at CMS

Trilepton measurement using 77 fb⁻¹ (2016-2017) *pp* data @ 13 TeV

- Single, double and trilepton triggers
- Exactly 3 isolated leptons
 - 2 must satisfy Z selections;
 - opposite sign same flavour
 - $-|m_{ll-}m_{Z}| < 15 \text{ GeV}$
 - BDT to discriminate prompt and non-prompt leptons
- Signal and control regions defined on jet/tag requirements
- Backgrounds
 - 2-3 jets, WZ is leading background
 - >4jets or >2 b-jets, ttZ is dominant

Phys. Rev. Lett. 122 (2019) 132003

Signal extraction for *tZq*

Various BDTs are defined in the different regions to optimise against different backgrounds

– Existence of a high p_T forward jet is the main discriminator

Additional CRs:

- WZ control region
 - Otag events
- ZZ control region
 - 4 lepton events
 - 2 pairs of leptons compatible with Z boson

MLL fit applied simultaneously to all BDT output distributions and the yields of WZ and ZZ control regions

Phys. Rev. Lett. 122 (2019) 132003

tZq measurement results

t-channel like process with a radiated photon

Cross section sensitive to top quark charge, and electric and magnetic dipole moments.

Defining part of the signature is a forward light-flavoured 'recoil' jet,

- Identifying this jet is an important part of any SM *tq* search

tyq measurement at CMS

Event selections

- Single muon channel only,
- Single photon required ($|\eta| < 1.44$),
 - electron conversion veto required,
 - $\Delta R(\gamma, X) > 0.5$, where X is other objects in the event,
- $p_T^{miss} > 30$ GeV,
- Signal region defined with ≥ 2 jets, 1 of which is b-tagged,
- $t\bar{t}\gamma$ CR with exactly 2 b-jets.

Backgrounds

- $V\gamma$ + jets, $WW\gamma$ + jets, single top + γ estimated from simulation,
- Misidentified photon background estimated from p_T dependent probability of a jet being identified as a photon.

Phys. Rev. Lett. 121 (2018) 221802

tyq results

1200

CMS

MLL fit on BDT response for signal and *tty* control regions

- Most important variables;
 - *η* of different objects
 - $\cos\theta$ between the muon and the light jet
- Fiducial cross section measurement:

 $\sigma(pp \rightarrow t\gamma j)\mathcal{B}(t \rightarrow \mu\nu b) = 115 \pm 17(\text{stat}) \pm 30(\text{syst}) \text{ fb}$

Agrees with SM prediction: 81 ± 4 fb

4.4 (3.0) s.d. observed (expected) First evidence of *tyq* production

Leading systematics:

- Jet energy Scale (12%)
- Signal modelling (9%)
- *Zy* + jets normalisation (8%)
- b-tag/mistag rates (7%)

35 9 fb

(13 TeV)

Conclusions

Top physics offers a unique test of the SM thanks to the unique properties of the quark

 Single top physics allows direct probes of EW couplings and BSM models

CMS has been making cutting edge measurements in single top physics for years, and now we are able to push the boundaries on rarer processes

- First observations of tW and tZq carried out by CMS
- First evidence for tyq reported by CMS

We look forward to many new results to come!

BACKUP

tW signal BDT input variables

- $p_{\rm T}$ of leading loose jet, set to 0 for events with no loose jets present;
- magnitude of the vector sum of the $p_{\rm T}$'s of leptons, jet, and $\vec{p}_{\rm T}^{\rm miss}$ $(p_{\rm T}^{\rm sys})$;
- *p*_T of the jet;
- ratio of the scalar sum of the $p_{\rm T}$ of the leptons to the scalar sum $(H_{\rm T})$ of the $p_{\rm T}$'s of leptons, jet, and $p_{\rm T}^{\rm miss}$;
- number of loose jets;
- centrality (ratio between the scalar sums of the $p_{\rm T}$ and of the total momentum) of the jet and the two leptons;
- magnitude of the vector sum of the $p_{\rm T}$ of the jet and leptons;
- *H*_T;
- ratio of $p_{\rm T}^{\rm sys}$ to $H_{\rm T}$ for the event;
- invariant mass of the combination of the leptons, jet, and $p_{\rm T}^{\rm miss}$;
- number of b-tagged loose jets.

tW 2j1t BDT input variables

- separation in the $\phi \eta$ space between the dilepton and dijet systems, $\Delta R(e^{\pm}\mu^{\mp}, j_1j_2)$;
- separation in the φ − η space between the dilepton system and the dijet and p_T^{miss} system, ΔR (e[±]μ[∓], j₁j₂p_T^{miss});
- p_T of the subleading jet;
- separation in the $\phi \eta$ space between the leading lepton and the leading jet, $\Delta R = (\ell_1, j_1)$.

Event yields:

	Prefit		Postfit	
Region	tW	$t\overline{t}$	tW	tī
1j1b	6147 ± 442	30622 ± 1862	5440 ± 604	30592 ± 582
2j1b	3125 ± 294	48484 ± 1984	2888 ± 321	47436 ± 612
2j2b	725 ± 85	25052 ± 2411	719 ± 88	25114 ± 281

Table 1. Number of expected prefit and postfit signal and $t\bar{t}$ background events.

tW systematics

Source	Uncertainty (%)
Experimental	
Trigger efficiencies	2.7
Electron efficiencies	3.2
Muon efficiencies	3.1
JES	3.2
Jet energy resolution	1.8
b tagging efficiency	1.4
Mistag rate	0.2
Pileup	3.3
Modeling	
$t\bar{t} \mu_R$ and μ_F scales	2.5
tW μ_R and μ_F scales	0.9
Underlying event	0.4
Matrix element/PS matching	1.8
Initial-state radiation	0.8
Final-state radiation	0.8
Color reconnection	2.0
B fragmentation	1.9
Semileptonic B decay	1.5
PDFs	1.5
DR-DS	1.3
Background normalization	
tī	2.8
VV	0.4
Drell-Yan	1.1
Non-W/Z leptons	1.6
tīV	0.1
MC finite sample size	1.6
Full phase space extrapolation	2.9
Total systematic	10.1
(excluding integrated luminosity)	10.1
Integrated luminosity	3.3
Statistical	2.8
Total	11.1

.

tgammq

	Process	Event yield
	$t\bar{t} + \gamma$	1401 ± 131
	$W\gamma + jets$	329 ± 78
	$Z\gamma$ + jets	232 ± 55
phase space: $p_{T,\gamma} > 25 \ GeV$, $\left \eta_{\gamma}\right < 1.44, \Delta R(X,\gamma) > 0.5$	Misidentified photon	374 ± 74
	$t\gamma$ (s and tW channel)	57 ± 8
	VVγ	8 ± 3
fiducial phase space	Total background	2401 ± 178
	Expected signal	154 ± 24
	Total SM prediction	2555 ± 180
	Data	2535