SUSY search with one isolated lepton at ATLAS

Huajie Cheng [IHEP], Shan Jin, Mohamad Kassem Ayoub, Yang Liu, Feng Lyu, Da Xu, Xin Wang, Chenzheng Zhu, Xuai Zhuang

> CLHCP2019, Dalian Oct 24th

Institute of High Energy Physics Chinese Academy of Sciences

Content

- Introduction
- Analysis Overview
- Signal Region
- Background estimations
- **♦** Systematics uncertainties
- Results and Interpretation

Summary

Introduction

- The Supersymmetry is a well motivated and favored extension of the Stand Model (SM):
 - solves hierarchy problem, dark matter candidate...
- This talk will focus on the results of SUSY search with 1I (+2b-jets) at ATLAS with full Run-2 data (139 fb⁻¹, included in the latest paper <u>SUSY-2019-08</u>).

Analysis Overview

Signature: 1 lepton + MET + 2 b-jets, decay from charginos and neutralinos (via W and Higgs boson)

- Small cross sections, but one lepton requirement can largely suppress QCD backgrounds and 2 b-jets from Higgs can help to increase the sensitivity.
- Dominant backgrounds are ttbar, single top and W+jets which are studied in dedicated control regions (CR); other backgrounds estimated in Monte Carlo simulation.
- The contributions in SRs are derived using a simultaneous fit.

Analysis Overview

Distributions in $m_{\rm T}$ and $m_{\rm CT}$ in general favour very different cuts for different signal points.

- Define signal regions with different bins in these observables.
- Signal regions otherwise share a (more or less) common set of requirements.

Simultaneous likelihood fit in all signal region bins (since all orthogonal to each other)

- Allows to explicitly consider the varying shapes between
 background and signal.
- Results in an increase in sensitivity.

Background distribution against different signal model points in red, blue and green.

Definition of signal regions binned in $m_{\rm T}$ and $m_{\rm CT}$.

Signal Regions

- Three signal regions with increasing m_T requirement
 - 3-step signal region optimization
 - Targeting increasing mass differences between chargino/neutralino and LSP
 - Share common set of kinematic requirements (apart from m(l, b))
- Binned in m_{CT} for model-dependent fit (excl. SRs)
 - 3 bins in m_{CT} each (in total 9 SRs), can perform 2D shapefit simultaneously

No bins for model-independent fit (disc. SRs)

• No m_T upper cut and no m_{CT} bins

	SR-LM	SR-MM	SR-HM
N _{lepton}		= 1	
$p_{\rm T}^{\ell}$ [GeV]	>	7(6) for $e(\mu)$	
N _{jet}		= 2 or 3	
N _{b-jet}		= 2	
$E_{\rm T}^{\rm miss}$ [GeV]		> 240	
$m_{b\bar{b}}$ [GeV]		∈ [100, 140]	
$m(\ell, b_1)$ [GeV]	—	_	> 120
$m_{\rm T}$ [GeV] (excl.)	∈ [100, 160]	€ [160, 240]	> 240
$m_{\rm CT}$ [GeV] (excl.)	{∈ [180, 230	$[0], \in [230, 280],$, > 280}
$m_{\rm T}$ [GeV] (disc.)	> 100	> 160	> 240
$m_{\rm CT}$ [GeV] (disc.)		> 180	

6

Dominant backgrounds: ttbar, single top, W+jets

- Use dedicated CRs to derive normalization factors for SRs
- VRs used to validate extrapolation from CRs to SRs
- > All regions share the same selection as the SR for all variables except m(l, b)

Small backgrounds: Z+jets, diboson, multiboson, ttV, tth, Vh

Estimated from MC simulation

CR	TR-LM	TR-MM	TR-HM	WR	STR	
$m_{b\bar{b}}$ [GeV]		<100 or >140		∈ [50, 80]	>195	
$m_{\rm T}$ [GeV]	∈ [100, 160]	∈ [160, 240]	>240	∈ [50, 100]	>100	
$m_{\rm CT}$ [GeV]		<180		>180	>180	
VR	VR-onLM	VR-onMM	VR-onHM	VR-offLM	VR-offMM	VR-offHM
$m_{b\bar{b}}$ [GeV]		∈ [100, 140]		$\in [50, 80] \cup [160, 195]$	$\in [50, 80] \cup [160, 195]$	∈ [50, 75] ∪ [165, 195]
$m_{\rm T}$ [GeV]	∈ [100, 160]	∈ [160, 240]	>240	∈ [100, 160]	∈ [160, 240]	>240
$m_{\rm CT}$ [GeV]		<180			>180	

CR	TR-LM	TR-MM	TR-HM	WR	STR	
$m_{b\bar{b}}$ [GeV]		<100 or >140		∈ [50, 80]	>195	
$m_{\rm T}$ [GeV]	∈ [100, 160]	€ [160, 240]	>240	∈ [50, 100]	>100	
<i>m</i> _{CT} [GeV]		<180		>180	>180	
VR	VR-onLM	V K-on MM	VR-onHM	VR-offLM	VR-offMM	VR-offHM
$m_{b\bar{b}}$ [GeV]		∈ [100, 140]		$\in [50, 80] \cup [160, 195]$	$\in [50, 80] \cup [160, 195]$	∈ [50, 75] ∪ [165, 195]
$m_{\rm T}$ [GeV]	∈ [100, 160]	€ [160, 240]	>240	∈ [100, 160]	∈ [160, 240]	>240
$m_{\rm CT}$ [GeV]		<180			>180	

CR	TR-LM	TR-MM	TR-HM	WR	STR	
$m_{b\bar{b}}$ [GeV]		<100 or >140		∈ [50, 80]	>195	
$m_{\rm T}$ [GeV]	$\in [100, 160]$	$\in [160, 240]$	>240	∈ [50, 100]	>100	
$m_{\rm CT}$ [GeV]		<180		>180	>180	
VR	VR-onLM	VR-onMM	VR-onHM	V K-offLM	VR-offMM	VR-offHM
$m_{b\bar{b}}$ [GeV]		∈ [100, 140]		$\in [50, 80] \cup [160, 195]$	$\in [50, 80] \cup [160, 195]$	$\in [50, 75] \cup [165, 195]$
$m_{\rm T}$ [GeV]	∈ [100, 160]	€ [160, 240]	>240	∈ [100, 160]	∈ [160, 240]	>240
$m_{\rm CT}$ [GeV]		<180			>180	

CR	TR-LM	TR-MM	TR-HM	WR	STR	
$m_{b\bar{b}}$ [GeV]		<100 or >140		∈ [50, 80]	>195	
$m_{\rm T}$ [GeV]	∈ [100, 160]	∈ [160, 240]	>240	∈ [50, 100]	>100	
$m_{\rm CT}$ [GeV]		<180		>180	>180	
VR	VR-onLM	VR-onMM	VR-onHM	VR-offLM	VR-offMM	VR-offHM
$m_{b\bar{b}}$ [GeV]		∈ [100, 140]		$\in [50, 80] \cup [160, 195]$	∈ [50, 80] ∪ [160, 195]	∈ [50, 75] ∪ [165, 195]
$m_{\rm T}$ [GeV]	∈ [100, 160]	€ [160, 240]	>240	∈ [100, 160]	∈ [160, 240]	>240
$m_{\rm CT}$ [GeV]		<180			>180	

CR	TR-LM	TR-MM	TR-HM	WR	STR	
$m_{b\bar{b}}$ [GeV]		<100 or >140		∈ [50, 80]	>195	
$m_{\rm T} [{\rm GeV}]$	∈ [100, 160]	∈ [160, 240]	>240	∈ [50, 100]	>100	
<i>m</i> _{CT} [GeV]		<180		>180	>180	
VR	VR-onLM	VR-onMM	VR-onHM	VR-offLM	VR-offMM	VR-offHM
$m_{b\bar{b}}$ [GeV]		∈ [100, 140]		$\in [50, 80] \cup [160, 195]$	$\in [50, 80] \cup [160, 195]$	$\in [50, 75] \cup [165, 195]$
$m_{\rm T}$ [GeV]	∈ [100, 160]	€ [160, 240]	>240	∈ [100, 160]	∈ [160, 240]	>240
<i>m</i> _{CT} [GeV]		<180			>180	

Systematic uncertainties

Experimental systematics

Dominant: JES, JER, MET, pile-up

> Less significant than theoretical uncertainties in all SRs

Theoretical uncertainties

- Calculate the uncertainties on transfer factors for dominant backgrounds
- For small backgrounds, normalize to loose preselection to avoid double count scale uncertainties with the xsec
- Uncertainties for signals are evaluated using truth samples (in a relaxed SR in case of low stat)

Signal Region	SP-I M	SP-MM	SR_HM
	SIC-LIVI		51(-11)/1
Total background expectation	27	8.6	8.1
Total uncertainty	±4 [15%]	±2.2 [25%]	±2.7 [34%]
Theoretic	al systematic uncertai	nties	
tī	±2.6 [10%]	±0.6 [7%]	±0.33 [4%]
Single top	±0.8 [2.7%]	±1.1 [12%]	±1.9 [23%]
W+jets	±0.23 [0.9%]	±0.07 [0.8%]	±0.19 [2.3%]
Other backgrounds	±0.13 [0.5%]	±0.15 [1.7%]	±0.08 [1.0%]
MCs	statistical uncertainties	i	
MC statistics	±1.7 [6%]	±1.1 [13%]	±1.2 [14%]
Uncertainties i	n the background norr	nalisation	
Normalisation of dominant backgrounds	±1.3 [5%]	±1.6 [18%]	±1.3 [16%]
Experimen	ntal systematic uncerta	inties	
E ^{miss} /JVT/pile-up/trigger	±1.8 [7%]	±0.4 [4%]	±0.4 [5%]
Jet energy resolution	±1.6 [6%]	±0.5 [6%]	±0.4 [5%]
<i>b</i> -tagging	±1.1 [4%]	±0.29 [3.4%]	±0.13 [1.5%]
Jet energy scale	±0.9 [3.2%]	±0.9 [10%]	±0.29 [4%]
Lepton uncertainties	±0.32 [1.2%]	±0.09 [1.0%]	±0.19 [2.3%]

Summary plot in all regions

- Both stat and syst uncertainties included
- Good agreement in all CRs
- Small discrepancies in VRs
- Kind of consequent (but not significant) offset in SRs

Distributions in SRs

- Post-fit distributions of mCT in SRs
- Both stat and syst uncertainties included
- Contributions from signals (pre-fit) also included

Model independent upper limits

- Calculate the model independent upper limits for each discovery SR: the visible cross-section, the observed and expected 95% CL upper limits on the BSM event yield, one-sided discovery p-value and the significance.
- Model dependent limits are shown in next slide (interpreted in simplified model)

Signal Region	$\langle \epsilon \sigma \rangle_{ m obs}^{95}[m fb]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL _B	p_0	Ζ
SR-LM(disc.)	0.26	36.8	$20.0^{+8.0}_{-5.4}$	0.97	0.03	1.88
SR-MM(disc.)	0.18	24.8	$15.3_{-4.6}^{+6.2}$	0.94	0.06	1.54
SR-HM(disc.)	0.11	14.7	$9.7^{+\overline{3.3}}_{-2.7}$	0.89	0.10	1.30

Model dependent limits

- Small excess \rightarrow observed limit weaker than expected limit
- Exclusion extends to 740 GeV for massless LSP

Summary

- The SUSY search with 1 lepton + 2b-jets + MET in the final state is performed with full Run-2 data (139 fb⁻¹) in ATLAS.
- Observed small but not significant excess in the SRs
 - \rightarrow Not ready for the discovery
 - \rightarrow Extend the limits to 740 GeV for massless LSP
- New efforts for 1I analysis are ongoing: inclusive search, machine learning... Stay tuned!

Object definition

Electrons

Cut	Value/description			
Preselected Electron				
Algorithm	AuthorElectron			
Acceptance	$p_{\rm T} > 7 {\rm GeV}, \eta^{\rm clust} < 2.47$			
Quality	LooseAndBLayerLLH			
IP	$\Delta z_0 \sin(\theta) < 0.5 \text{ mm}$			
	Signal Electron			
Acceptance	$p_{\rm T} > 7 {\rm GeV}$			
Quality	TightLLH			
Isolation	FCLoose for $p_{\rm T} < 200 {\rm GeV}$			
	FCHighPtCaloOnly for $p_{\rm T} > 200 {\rm GeV}$			
IP	$d_0/\sigma(d_0) < 5$			

Muons

Cut	Value/description			
Preselected muon				
Acceptance	$p_{\rm T} > 6 { m GeV}, \eta < 2.7$			
Quality	Medium			
IP	$\Delta z_0 \sin(\theta) < 0.5 \text{ mm}$			
S	Signal muon			
Acceptance	$p_{\rm T} > 6 { m GeV}, \eta < 2.5$			
Isolation	FCLoose			
IP	$d_0/\sigma(d_0) < 3$			

Jets

Cut	Value/description			
Preselected jet				
Algorithm	anti- k_t -4, Topo			
Acceptance	$p_{\rm T} > 20 { m GeV}, \eta < 4.5$			
Signal jet				
Acceptance	$p_{\rm T} > 30 {\rm GeV}, \eta < 2.8$			
JetVertexTagger	JVT @ 92 % working point			
	for $p_{\rm T} < 120 {\rm GeV}$ and $ \eta < 2.8$			
Signal <i>b</i> -jet				
<i>b</i> -tagger Algorithm	MV2c10 @ 77 % working point			
Acceptance	$p_{\rm T} > 20 { m GeV}, \eta < 2.5$			

Missing transverse momentum

- Computed using baseline/preselected objects: electrons, muons, jets, photons and track soft term.
- Using *tight* working point, no fJVT.

Overlap removal

- EleMuOR: Electrons sharing ID track with muons are rejected.
- EleEleOR: If electron shares same ID track with other electron, the one with lower p⊤ is rejected.
- MuJetOR: Jets within dR=0.2 of muon are rejected (or if matched through ghost association).
- EleJetOR: Electrons close to jet are removed (sliding cone size).
- JetMuOR: Muons close to jet are removed (sliding cone size).

Discriminating variables

Definition of all ROIs by using kinematic properties of *b*-jets, lepton and E_T^{miss}:

- <u>**m**</u>_{bb}: preferentially select *b*-jets from Higgs boson decays by requiring $100 < m_{bb} < 140$.
- <u>m_r</u>: aims to reconstruct leptonically decaying W boson, has kinematic endpoint at m_W for semileptonic ttbar and W+jets.
- <u>**m**c</u>**T**: contransverse mass of *b*-jets, has kinematic endpoint for ttbar background.
- <u>m(l,b_1)</u>: invariant mass of lepton and leading b-jet, provides good discrimination against top backgrounds, esp. for high-mass signal points.

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss} (1 - \cos[\Delta \phi(\boldsymbol{p}_{\rm T}^{\ell}, \boldsymbol{p}_{\rm T}^{\rm miss})])} \qquad m_{\rm CT} = \sqrt{2p_{\rm T}^{b_1} p_{\rm T}^{b_2} (1 + \cos \Delta \phi_{bb})}$$

Previous analysis

Results based on 2015+2016 data: (arXiv:1812.09432)

Theory uncertainty calculation

- For dominant backgrounds:
 - Uncertainty on the transfer factors.
 - Normalisation region is the sum of all control regions.
 - Statistical uncertainty is only added if a separate systematic sample with different generator is used.

$$TF_{\text{Syst}}^{\text{Process}}(CR_i \to R_j) = \frac{N(R_j, MC)}{N(CR_i, MC)}$$
$$\Delta TF_{\text{Syst}}^{\text{Process}} = \frac{TF_{\text{Syst}}^{\text{Variation}} - TF_{\text{Syst}}^{\text{Nominal}}}{TF_{\text{Syst}}^{\text{Nominal}}} = \frac{TF_{\text{Syst}}^{\text{Variation}}}{TF_{\text{Syst}}^{\text{Nominal}}} - 1 = \frac{\frac{A}{B}}{\frac{C}{D}} - 1$$
$$\Delta TF_{stat} = \left(\Delta TF_{\text{Syst}}^{\text{Process}} + 1\right) \sqrt{\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 + \left(\frac{\sigma_C}{C}\right)^2 + \left(\frac{\sigma_D}{D}\right)^2}}$$

- For small backgrounds:
 - Normalise to loose preselection such that scale uncertainties are not double counted with cross-section uncertainty.

$$\Delta N_{\text{region}}^{\text{sys}} = \frac{N_{\text{region}}^{\text{sys}} \cdot N_{\text{preselection}}^{\text{nominal}}}{N_{\text{preselection}}^{\text{sys}} \cdot N_{\text{region}}^{\text{nominal}}} - 1$$