

A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector

Dimitrii Krasnopevtsev*

*University of Science and Technology of China

Outline

Motivation
 Analysis strategy
 Event categorization
 Signal and background models
 Results in terms of signal strength
 Prospects for HL LHC

Higgs Bang

Motivation

- Process offers the best possibility to measure the Higgs boson coupling to the second-generation fermions at the LHC.
- ➤ Any deviation from the SM prediction could be a sign of new physics.

Challenges and previous results

Previous result: ICHEP2018, early Run 2 data: \checkmark Expected significance: 0.95 σ \checkmark Signal strength: μ =0.22±1.05 (μ =1.00±1.00 expected) \checkmark 95% CL limits: μ <2.23 (μ <2.07 expected for μ =0)

Very small B(H->μ-μ+) = 2.2×10-4 and large background rate from Drell-Yan - Z/γ->μ-μ+
 Inclusive S/B is ~0.1%: very challenging analysis

Analysis strategy

- Loose di-muon selection to maximize efficiency
- Veto events with b-tagged jets to reject tt background
- Multivariate categorization to maximize sensitivity (NEW - classification for different jet multiplicities)
- > Signal extraction from fit to m_{μμ(γ)} invariant mass in data (narrow resonance)
- Recover up to one FSR photon candidate to improve mass reconstruction (NEW)

5

Events selection

Loosest unprescaled single muon triggers

	Selection			
	Primary vertex	loose quality		
	Two opposite-charge muons	and isolation		
Common	Muons: $ \eta < 2.7$, $p_{\rm T}^{\rm lead} > 27 GeV$, $p_{\rm T}^{\rm sublead} > 15 GeV$			
	No b -tagged jets			
Z region	$76 < m_{\mu\mu} < 106 GeV$			
Sideband region	$110 < m_{\mu\mu} < 120 GeV$ or $130 < m_{\mu\mu} < 180 GeV$			
Fit region	$110 < m_{\mu\mu} < 160 GeV$			
Inta	$p_{\mathrm{T}} > 25 GeV$ and $ \eta < 2.5$			
JE18	or with $p_{\rm T} > 30 GeV$ and $2.5 < \eta < 4.5$			

Allows to constrain the backgrounds at the same time as extracting the signal.

Events categorization

➤ Target Higgs production via ggF and VBF in exclusive jet selections with ≥2/= 1/= 0 jets
 ➤ Production-driven BDT categorization for separate jet-topology channels to maximize sensitivity (XGBoost BDT trained with signal MC vs. side-band data)

See backup for more details

Events categorization

- > Higgs classifier target ggF+VBF: di-muon variables and jet kinematics where available
- ➤ VBF classifier target VBF for 2 jets
- > Optimize category boundaries to maximize expected significance

See backup for more details

Events categorization summary

S/B in range: 0.08%-12%

Signal composition

Background composition

Background model

Background model was developed with high-stat. dedicated fast Drell-Yan simulation (~100 ab^{-1})

Background PDF = DY×Empirical function

LO Drell-Yan Core function

✓NLO Powheg (0/1 jet) and LO Alpgen (2 jet).
✓without free parameters - same in each category.

Empirical function

✓ power-law or exponential of polynomial with parameters constrained by data in simultaneous fit - different in each category.

See backup for more details

Signal model

- > Signal is predicted to be a narrow resonance with a width of 4.1 MeV for $m_H = 125.09$.
- > Signal model fitted in each category to signal MC (double-sided Crystal Ball function)
- ≻ Individual simultaneous S + B fit in all 12 categories

Signal and background yields

Category	Data	S_{SM}	S	B	S/\sqrt{B}	S/B~[%]
VBF High	40	4.5	2.3	34	0.39	6.6
VBF Medium	109	5.5	2.8	100	0.28	2.8
VBF Low	450	9.6	4.9	420	0.24	1.2
2-jet High	3400	38	19	3440	0.33	0.6
2-jet Medium	13938	70	35	13910	0.30	0.3
2-jet Low	40747	75	38	40860	0.19	0.1
1-jet High	2885	32	16	2830	0.31	0.6
1-jet Medium	24919	107	54	24890	0.35	0.2
1-jet Low	77482	134	68	77670	0.24	0.1
0-jet High	24777	85	43	24740	0.27	0.2
0-jet Medium	85281	155	79	85000	0.27	0.1
0-iet Low	180478	144	73	180000	0.17	< 0.1

读 孝 我

Signal Strength

Uncertainties on µ:

data statistics: 0.7 - *dominant*Theory signal systematics: 0.08
Experimental signal systematics: 0.07
Background modelling: 0.06

Compatibility of the measured signal strengths between the 12 categories is at the level of 33%

Prospects HL LHC

1998 Contraction of the second second

- ✓ The H→µµ signal from ggF and VBF is expected to be observed with a significance of more than 90.
- ✓ The uncertainty on the Higgs production cross section times the branching ratio to dimuons is expected to be around 13%.

Category	S	VBF	В	FWHM	σ_G	$S/\sqrt{S+B}$
				$[{ m GeV}]$	$[{ m GeV}]$	
VBF-like	386	197	19430	4.37	1.88	2.75
low $p_{\rm T}$, central	921	11	350500	3.21	1.37	1.55
med $p_{\rm T}$, central	2210	84	300500	3.08	1.32	4.01
hi $p_{\rm T}$, central	1810	242	211800	3.50	1.56	3.91
low $p_{\rm T}$, non central	2460	28	1740500	4.11	1.79	1.86
med $p_{\rm T}$, non central	5860	230	1483600	4.24	1.80	4.80
hi $p_{\rm T}$, non central	4380	588	829000	4.70	1.92	4.80
Total	18020	1380	4935500	3.93	1.69	9.53
				1		с .: .

resolution of the core function

Summary

- □ Significance: 0.8σ (1.5 σ) obs. (exp.)
- 50% improvement in sensitivity over 80 fb⁻¹ result
- □ Signal strength: μ = 0.5 ±0.7
- □ Upper limit: BR(H-> μ - μ +) < 1.7× σ SM (for expected <1.3× σ SM)

Stay tuned for future H->µ-µ+ results!

The end, thank you.

Training variables

- > o-jet: pTµµ, Yµµ, $|\cos(\theta^*)|$
- > 1-jet: 0-jet variables + pTj1, η j1, $\Delta \phi$ j1, $\mu \mu$
- ≥ 2-jet: 1-jet variables + pTj2, ηj2, Δφj2,μμ, pTjj, Yjj, Δφjj,μμ, mμμ, MET

Empirical function for background model

	Function Exp		pression	
_	Powe	rN $m_{\mu\mu}^{(a_0+a_1m_{\mu\mu}+$	$a_2 m_{\mu\mu}^2 + \dots + a_N m_{\mu\mu}^N)$	
=	Epoly	$VN \exp(a_1 m_{\mu\mu} + a_2)$	$m_{\mu\mu}^2 + \ldots + a_N m_{\mu\mu}^N$)
Category		Empirical Function	$\max(SS / \delta S)[\%]$	$\max(\mathrm{SS}/S_{SM})[\%]$
VBF High		Power0	10.6	14.7
VBF Medi	um	Epoly2	0.51	1.3
VBF Low		Power1	3.6	7.5
2-jet High		Epoly2	8.7	16.3
2-jet Medi	um	Epoly4	1.2	3.9
2-jet Low		Epoly3	-8.2	-33.2
1-jet High		Power1	6.1	12.1
1-jet Medi	um	Epoly3	-8.1	-19.8
1-jet Low		Epoly3	-2.5	-5.8
0-jet High		Power1	14.6	26.5
0-jet Medi	um	Epoly3	-11.6	-39.0
0-jet Low		Epoly3	-18.5	-74.2

The functions are selected so that the spurious signal systematics become < 20% of the statistical uncertainty in each category.

Category	0-jet	1-jet	VBF	2-jet
				$O_{\rm VBF} < 0.60$
High	$O_{ggF}^0 \ge 0.75$	$O_{ggF}^1 \ge 0.78$	$O_{\rm VBF} \ge 0.89$	$O_{ggF}^2 \ge 0.48$
Medium	$0.35 \le O_{ggF}^0 < 0.75$	$0.38 \le O_{ggF}^1 < 0.78$	$0.77 \leq O_{\rm VBF} < 0.89$	$0.22 \le O_{ggF}^2 < 0.48$
Low	$O_{ggF}^0 < 0.35$	$O_{ggF}^1 < 0.38$	$0.60 \leq O_{\rm VBF} < 0.77$	$O_{ggF}^2 < 0.22$

To maximize the total number counting significance

$$Z_{\rm tot} = \sqrt{\sum_i Z_i^2},$$

$$Z_i = \sqrt{2\left((s_i + b_i)\log\left(\frac{s_i + b_i}{b_i}\right) - s_i\right)},$$

ATLAS vs CMS results

	ATLAS	CMS
significance (expected)	0.8σ (1.5σ)	0.9σ (1.0σ)
signal strength	0.5 ±0.7(stat) +0.2/-0.1(syst)	$1.0 \pm 1.0 \text{ (stat)} \pm 0.1 \text{ (syst)}$
upper limit	$< 3.8 \times 10^{-4}$	< 6.4 × 10 ⁻⁴

