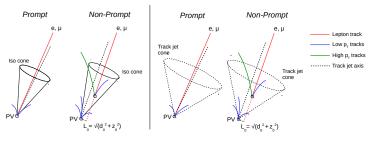
Prompt lepton tagger with the ATLAS detector

Fudong He

University of Science and Technology of China

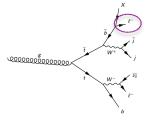
October 24, 2019

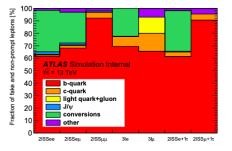


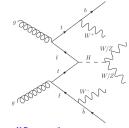
OUTLINE

- Introduction of the prompt lepton tagger algorithm.
- Newly developed calorimeter isolation variable
- Develop dedicated lifetime observables
- Training procedures and inputs
- Current results for electrons and muons
- Conclusion

Introduction


- Prompt Lepton Tagger aims to identify prompt electrons/muons from W/Z decays:
 - Non-prompt leptons produced in B/C decays are significant background for many analyses
 - Use isolation and lifetime observables to veto non-prompt leptons
- Current status:
 - The PromptLeptonVeto BDT is the previous version of the Prompt Lepton Tagger that we developed last year.
 - Gives ~ 70% higher rejection of non-prompt leptons compared to ATLAS official isolation working point (FixedCutTight).
 - Used and increase the sensitivity in the <u>ttH</u>, <u>VVV</u> and <u>ttW</u> analysis.


Fudong He

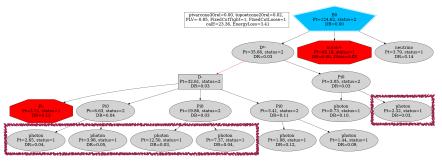

Prompt lepton tagger with the ATLAS detector

Introduction

tī contribute to same sign 2 lepton channel

ttH Feynman diagram

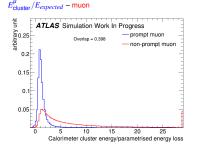
- The non-prompt background is the limiting factor in an early observation of *ttH*.
- The isolation cut significantly reduces the background from tī, but the cross section of signal process like ttH is small enough.

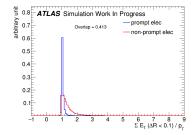

Newly developed calorimeter isolation variable

Non-prompt muon event display

Non-prompt muon below passes standard isolation requirement

- B^0 decays to muon, v_{μ} and D^- within the small angle to the muon ($\Delta R = 0.03$)
- D^- further decays to a π^- and several π^0 s which decay to photons
- Results in large calorimeter energy deposit close to the reconstructed muon



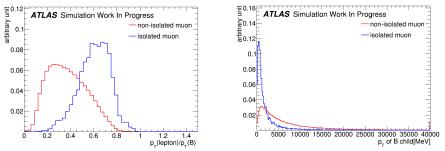

Standard isolation tools do not include the core energy around the lepton.

Fudong He

Newly developed isolation variables

- For muon, $E_{\text{cluster}}^{\mu}/E_{expected}$ = muon cluster energy/ Parameterised energy loss.
 - E_{cluster}^{μ} : collect all the energy of the clusters associated to the muon trajectory.
 - *E_{expected}*: refers to the estimated energy loss of the muon by reconstruction.
 - The boosted b-jet will contribute to the non-prompt muon cluster energy.
- For electron, we use $\Sigma E^e_{T,cluster}(\Delta R < 0.15)/p^e_T$
 - Electron will deposit all its energy does not have the "energy loss".

$\Sigma E_T^e cluster (\Delta R < 0.15) / p_T^e$ – electron

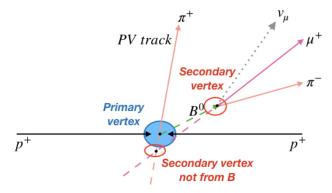

Fudong He

Develop dedicated lifetime observables

Properties of B semi-leptonic decays on MC

- Inclusive reconstructed non-prompt muons with p_T > 10 GeV
- Isolated non-prompt muons: in addition passed isolation requirement.

p_T^{μ}/p_T^B

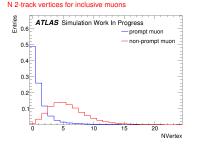

Properties of isolated non-prompt muons:

- Muon carries the majority of B hadron p_T
- Charged hadrons (that are produced in B decay) have low p_T
- Collect looser tracks with p_T > 500 MeV while BTag use 1 GeV typically.
 - Will include in average \sim 8.43% more tracks from B decay.

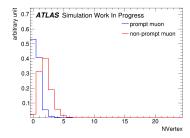
p_T of additional charged hadrons produced in B decay

Vertex fit using muon and track pair

- Fit each lepton + ID track combination for 2-track vertices.
- Merge 2-track vertices that close to each other.


Secondary vertex multiplicity - muon

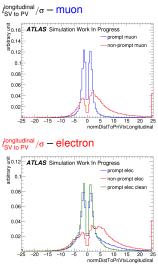
 $\sim 47\%$ of prompt muons will have reconstructed vertex. $\sim 98\%$ of non-prompt muons will have reconstructed vertex


- Merge 2-track vertices will reduce the number of vertex for each leptons.
- One vertex (primary vertex) reconstructed for prompt muon is expected.
- For non-prompt muons, we will more often find both primary vertex and secondary vertex.

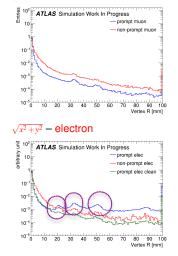
Similar observation for electrons.

- Vertices from material interaction are also considered.

N vertices for inclusive muons - after merging


Fudong He

Merged vertex variables


I $l_{SV \text{ to PV}}^{\text{longitudinal}}/\sigma$: the longitudinal significance distance between SV and the PV.

Fudona He

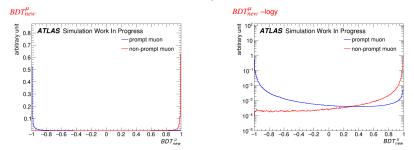
 Performed additional vertex selection for electron vertices: clean the SV alone the lepton track direction.

$\sqrt{x^2 + y^2}$ – muon

Training procedures and inputs

Training procedures and inputs

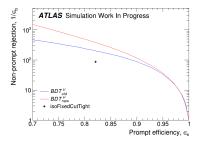
- BDT^µ_{new}: 8 input variables; p_T bin normalization is performed; do loose isolation pre-selection on training samples.
- BDT^e_{new}: 10 input variables; train forward electrons and central electrons separately; p_T bin normalization is performed; do loose isolation pre-selection on training samples.
- p_T bin normalization suppress the strong p_T dependence
 - p_T bins (muons): 10, 15, 20, 25, 31, 40, 10000 GeV
 - p_T bins (electrons): 10, 20, 40, 10000 GeV
 - Normalize non-prompt muon yield to prompt muon yield in each p_T bin, to remove p_T dependence check_ptnorm.pdf


Inputs	Description	BDT^{μ}_{new}	BDT^{e}_{new}
RNNIP	RNN using track impact parameters and other variables ¹	1	1
$l_{\rm SV to PV}^{\rm longitudinal}/\sigma$	$l_{\text{SV to PV}}^{\text{longitudinal}}/\sigma$ Secondary vertex longitudinal significance using tracks with $p_{\text{T}} > 500 \text{ MeV}$		
p_T VarCone $30/p_T$	Lepton isolation using ID tracks within a cone of $\Delta R < 0.3$	 Image: A set of the set of the	 Image: A set of the set of the
E_T TopoCone $30/p_T$	Lepton isolation using topological clusters within a cone of $\Delta R < 0.3$	1	1
$E_{\text{cluster}}^{\mu}/E_{expected}$	Relative muon calorimeter cluster energy	1	-
$rac{E_{ ext{cluster}}^{\mu}/E_{expected}}{\sum_{ ext{cluster}}^{dR<0.15}E_T/p_T}$	sum of cluster energy divided by lepton p_T	-	 Image: A second s
N _{track} in track jet	Number of tracks clustered by the track jet	-	 Image: A set of the set of the
p_T^{rel}	Lepton p_T along the track jet axis: $p \cdot \sin(<$ lepton, track jet $>)$	-	1
$p_T^{\text{lepton track}}/p_T^{\text{track jet}}$	Lepton track p_T divided by track jet p_T	1	1
$\Delta R(\text{lepton}, \text{track jet})$	lepton, track jet) ΔR between the lepton and the track jet axis		1
p_T^{lepton} bin number	Index of the bin of lepton p_T	1	1

¹ will re-train it dedicated to prompt lepton tagging

Performance

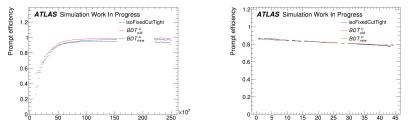
BDT score of muon

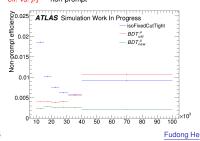

Perform on medium reconstructed muon with p_T > 10 GeV

BDT type: Gradient BDT.

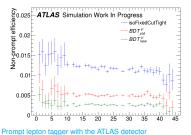
BDT configuration: NTrees=1000; NCuts=100; MaxDepth=7; MinNodeSize=0.05%;

Current performance for the muons

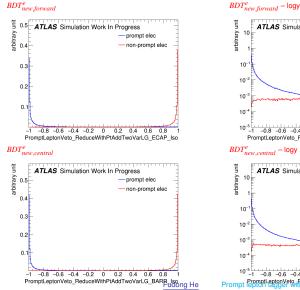

- Check non-prompt muon rejection for medium reconstructed muons with $p_{T}^{lepton} > 10 \text{ GeV}$
- Prompt Lepton Tagger(s) reject more non-prompt muons compared to isolation cuts
- **BDT** $_{new}^{\mu}$ is the recommend one now.
- Substantial improvement with updated algorithms

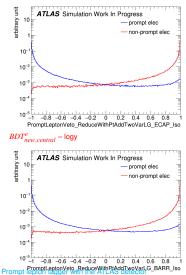

Algorithm	prompt eff. cut	prompt efficiency(%)	Bkg. rejection (1/eff.)
BDT^{μ}_{new}	-0.875	$82.14^{+0.01}_{-0.01}$	$381.6^{+5.8}_{-5.9}$
BDT^{μ}_{old}	-0.805	$82.14^{+0.01}_{-0.01}$	$201.1^{+2.2}_{-2.2}$
isoFixedCutTight	1.	$82.14^{+0.01}_{-0.01}$	$85.3^{+0.6}_{-0.6}$

Muon efficiency


Prompt muon efficiency at same overall efficiency of $p_T > 10$ GeV muons as the FixedCutTight eff. vs. p_T – prompt eff. vs. Average Interactions – prompt

• BDT_{new}^{μ} has better non-prompt muon rejection in high p_T region. eff. vs. p_T – non-prompt eff. vs. Average Intera

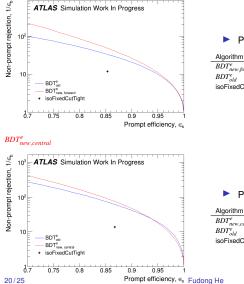

eff. vs. Average Interactions - non-prompt



18/25

BDT score of electron

- Use the same BDT type and configuration as the muons.
- Perform on p_T > 10 GeV forward electron (above) and central electron (below).



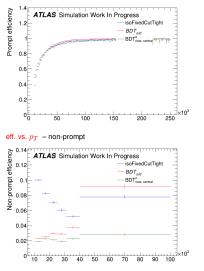
Current performance for the electrons

Substantial improvement with updated algorithms

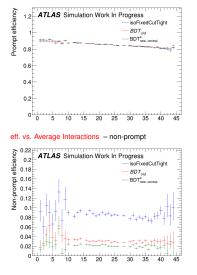
$BDT^{e}_{new,forward}$

Perform on $p_T > 10$ GeV forward electron.

Algorithm	prompt eff. cut		Bkg. rejection (1/eff.)
BDT ^e new.forward	-0.615	$85.37^{+0.04}_{-0.04}$	$47.8^{+0.7}_{-0.7}$
BDT^{e}_{old}	0.045	$85.37^{+0.04}_{-0.04}$	$32.9^{+0.4}_{-0.4}$
isoFixedCutTight	1.	$85.37^{+0.04}_{-0.04}$	$11.7^{+0.1}_{-0.1}$


Perform on p_T > 10 GeV central electron.

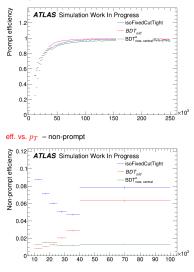
Algorithm	prompt eff. cut	prompt efficiency(%)	Bkg. rejection (1/eff.)
BDT ^e new.central	-0.705	$86.76^{+0.02}_{-0.02}$	$75.4^{+0.8}_{-0.8}$
BDT ^e _{ald}	-0.535	$86.76^{+0.02}_{-0.02}$	$61.2^{+0.6}_{-0.6}$
isoFixedCutTight	1.	$86.76_{-0.02}^{+0.02}$	$13.7^{+0.1}_{-0.1}$


Forward electron efficiency

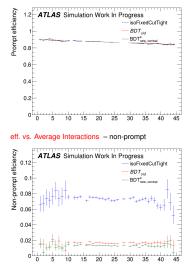
Prompt forward electron efficiency at same overall efficiency of p_T > 10 GeV forward electrons as the FixedCutTight

eff. vs. pT - prompt

eff. vs. Average Interactions - prompt



Fudong He


Central electron efficiency

Prompt central electron efficiency at same overall efficiency of p_T > 10 GeV central electrons as the FixedCutTight

eff. vs. pT - prompt

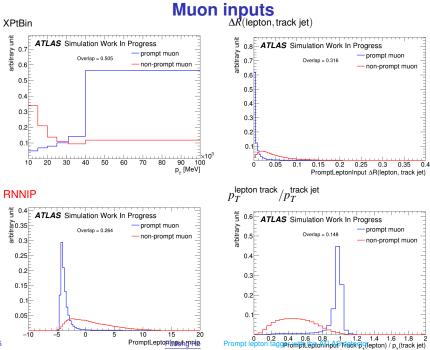
eff. vs. Average Interactions - prompt

Fudong He

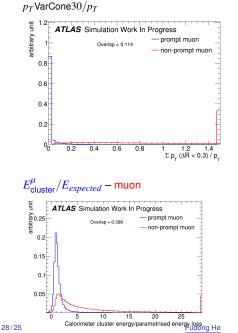
Conclusion

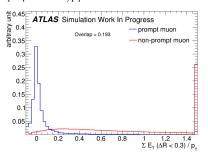
Conclusion

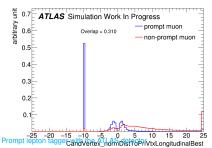
- BDTs combined isolation information and lifetime information outperform standard isolation working points in selecting prompt leptons.
- Dedicated isolation variable and lifetime variables are developed for the prompt lepton tagging.
- New BDTs with optimized training procedure have shown better performance than the current BDTs (PromptLeptonVeto).
- This study will be finalize sooner after adding new RNN variable.


Thank you for your time !

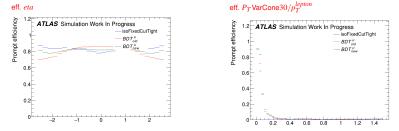
BACKUP


Soft vertex finding

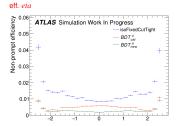

- Collect loose ID tracks within a cone of $\Delta R = 0.4$ centered at the muon
- Fit 2-track vertexes using muon track + ID track pairs
 - Vertex fitter candidates: <u>Trk::TrkVKalVrtFitter</u>, <u>Trk::FastVertexFitter</u> and Trk::SequentialVertexFitter.
 - Three fitters above show similar performance in our case.
 - Choose <u>Trk::FastVertexFitter</u> for our study since it has higher efficiency and straightforward theory.
- Select vertexes with fit probability at < 3%
- Sort selected 2-track vertexes by track pT , then start with highest pT track
- Iteratively add each 2-track vertex, starting with closest vertex, then fit merged vertex
- Include ID tracks that fail 2-track vertex fit with lepton track aim to reconstruct charm decay vertex.


27/25

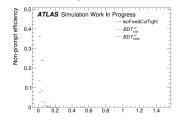
Muon inputs E_T TopoCone $30/p_T$



 $l_{\rm SV \ to \ PV}^{\rm longitudinal}/\sigma$



Muon efficiency


Prompt muon efficiency at same overall efficiency of p_T > 10 GeV muons as the FixedCutTight

ReduceWithPt_Iso outperforms ReduceWithPt in topoetcone30rel < 0.3 region.

eff. P_T VarCone30/ p_T^{lepton}

Fudong He

Prompt lepton tagger with the ATLAS detector