

Rare decays & lepton flavor universality test

Jibo HE/何吉波(UCAS) CLHCP2019 @ 大连理工大学(DLUT)

Introduction

• Rare decays: suppressed in SM.

Introduction

• Rare decays: suppressed in SM. New Physics?

The LHCb experiment

• Dedicated to precision study of *b/c*-hadrons

LHCb luminosity prospects

* See Prof. J.C. Wang's talk on Sunday for the LHCb upgrades

6 fb⁻¹

3 fb⁻¹

Upgrade!! Upgrade!?

23 fb⁻¹

Phase-1

46 fb⁻¹

Phase-1b

>300 fb⁻¹ ??

Phase-2

Upgrade??

Bremsstrahlung corrections

Rare decays at LHCb

• Radiative

$$-B_s^0 \rightarrow \phi \gamma, \Lambda_b^0 \rightarrow \Lambda \gamma, B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$$

Rare charm

$$-D^0 \rightarrow \mu^+ \mu^-$$
, $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$

Rare strange

$$-K_S^0 \rightarrow \mu^+ \mu^-$$
, $\Sigma^+ \rightarrow p \mu^+ \mu^-$

• Very rare decays

$$-B^{0}_{(s)} \to \mu^{+}\mu^{-}, B^{0}_{(s)} \to \tau^{+}\tau^{-}, B^{0}_{(s)} \to \mu^{+}\mu^{-}\mu^{+}\mu^{-}$$

• Lepton flavor violation

$$-B^0_{(s)}
ightarrow au^+ \mu^-$$
 , $B^0_{(s)}
ightarrow e^+ \mu^-$, $au^+
ightarrow \mu^+ \mu^- \mu^+$

• Electroweak penguin $-B^0 \rightarrow K^{*0}\mu^+\mu^-$, LFU

Photon polarization in B_s^0 • Photons in $b \rightarrow s\gamma$ mainly left-handed • Time-dependent signal rate W $\mathcal{P}(t) \propto e^{-\Gamma_s t} \{ \cosh\left(\Delta\Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta\Gamma_s t/2\right) \}$ $+\zeta C \cos(\Delta m_s t) - \zeta S \sin(\Delta m_s t) \}$ with $\mathcal{A}^{\Delta} \propto 2 \frac{\gamma_R}{m}$. $\mathcal{A}^{\Delta}_{SM} = 0.05 \pm 0.03$ 0005 MeV/C²) Candidates / (25 MeV/c² LHCb 500 LHCb + Data + Data - Model - Model $B^0 \rightarrow K^{*0} \gamma$ 400 $B^0_s \rightarrow \phi \gamma$ ···· Signal $\tilde{\mathcal{C}}_{2000}$ Peaking Peaking $B^0 \rightarrow K^{*0} \eta$ 300 Missing kaon Missing pion -24.8k 4.1k Combinatorial: $B \rightarrow K \pi \pi^0 X$ 200 Combinatorial 100 500 0 5000 5500 6000 5000 5500 6000 $m(K^{*0}\gamma)$ [MeV/ c^2] $m(\phi \gamma)$ [MeV/ c^2] Jibo HE (UCAS)

$B_s^0 \rightarrow \phi \gamma$, untagged analysis

• Assuming equal mixture of B_s^0/\overline{B}_s^0 , simplified

 $\mathcal{P}(t) \propto e^{-\Gamma_s t} \{ \cosh\left(\Delta\Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta\Gamma_s t/2\right) \}$

Measured

 $\mathcal{A}^{\Delta} = -0.98^{+0.46+0.23}_{-0.52-0.20}$

$B_s^0 \rightarrow \phi \gamma$, tagged analysis

- Same dataset, with flavor-tagging $\mathcal{P}(t) \propto e^{-\Gamma_s t} \{ \cosh\left(\Delta\Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta\Gamma_s t/2\right) \}$ $\mathcal{A}_{\phi\gamma}^{\Delta} \approx \frac{\text{Re}\left(e^{-i\phi_{s}}C_{7}C_{7}'\right)}{|C_{7}|^{2} + |C_{7}'|^{2}} \quad S_{\phi\gamma}^{\Delta} \approx \frac{\text{Im}\left(e^{-i\phi_{s}}C_{7}C_{7}'\right)}{|C_{7}|^{2} + |C_{7}'|^{2}}$

$$S_{\phi\gamma} = 0.43 \pm 0.30 \pm 0.11$$

$$C_{\phi\gamma} = 0.11 \pm 0.29 \pm 0.11$$

$$\mathcal{A}_{\phi\gamma}^{\Delta} = -0.67 ^{+0.37}_{-0.41} \pm 0.17$$

Jibo HE (UCAS)

Observation of $\Lambda_h^0 \to \Lambda \gamma$

- Baryonnic $b \rightarrow s\gamma$ not observed yet. Upper limit set by CDF, $\mathcal{B} < 1.9 \times 10^{-3}$ [CDF, PRD 66 (2002) 112002]
- In SM, $\mathcal{B} \sim 0.06 1 \times 10^{-5}$

• First observation, BR:

 $\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma) = (7.1 \pm 1.5 \pm 0.6 \pm 0.7) \times 10^{-6}$

 $K^0_{\varsigma} \to \mu^+ \mu^-$

• SM predicts: $\mathcal{B} = (5.2 \pm 1.5_{LD}) \times 10^{-12}$, can be enhanced by up to factor 100

 10^{-6}

 10^{-7}

 10^{-8}

Previous limit

Jibo HE (UCAS)

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$, latest results • $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ observed in single experiment(s)

- LHCb (4.6 fb⁻¹): 7.8σ, ATLAS (26 fb⁻¹): 4.6σ, CMS (61 fb⁻¹): 5.6σ
- Still compatible with SM, start to be interesting

$B_{\rm s}^0 \to \mu^+ \mu^-$ effective lifetime

• B_s^0 mixing \Rightarrow effective τ $=\frac{\tau_{B_{S}}}{(1-y_{s}^{2})}\frac{1+2y_{s}A_{\Delta\Gamma}+y_{s}^{2}}{1+y_{s}A_{\Delta\Gamma}}$ $au_{\mu\mu}$ [PRL 118 (2017) 191801]

 $A_{\Lambda\Gamma}=1$ in SM

$$y_s \equiv \tau_{B_s} \Delta \Gamma_s / 2$$

First measurement, not yet sensitive to $A_{\Lambda\Gamma}$

$$au(B_s^0 \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$$

 $1.70^{+0.61}_{-0.44} \text{ ps}$
[CMS-PAS-BPH-16-004]

 $B^0_{(s)} \rightarrow \tau^+ \mu^-$

- LFV, highly suppressed in SM, $\mathcal{B} \sim O(10^{-54})$, may be enhanced by NP models
 - -Z', up to 10^{-8}
 - Leptoquarks, $10^{-9} 10^{-5}$
 - Pati-Salam gauge model, $10^{-4} 10^{-6}$
- Best limit given by Babar $\mathcal{B}(B^0 \to \tau^+ \mu^-) < 2.2 \times 10^{-5} \text{ at } 90\% \text{ CL}$

[Babar, PRD 77 (2008) 091104]

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Rates and angular distributions sensitive to NP

Branching fraction of $b \rightarrow s\ell^+\ell^-$

• Some tensions seen

Jibo HE (UCAS)

$$B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-} P_{5}'$$

• $P_{5}' = \frac{S_{5}}{\sqrt{F_{L}(1-F_{L})'}}$, less form-factor dependent

• Also measured by Belle, ATLAS, CMS

[LHCb, JHEP 02 (2016) 104] [Belle, PRL 118 (2017) 11180 [ATLAS, JHEP 10 (2018) 047] [CMS, PLB 781 (2018) 517]

New physics, or QCD?

- Charm loop effects? [Lyon, Zwicky, arXiv:1406.0566]
 - Large non-factorisable effects (or NP) required to have consistent picture between BESII $e^+e^- \rightarrow$ hadrons data and the LHCb result

Jibo HE (UCAS)

Lepton flavor universality

• Three lepton families (e, μ, τ) have identical couplings to the gauge bosons

Lepton flavor universality violation? New Physics!

Experimental test of LFU

• Well established in SM, e.g. *W->lv*

- Some tension

[LEP, PR 532 (2013) 119] $\mathcal{B}(W \to \mu \overline{\nu}_{\mu}) / \mathcal{B}(W \to e \overline{\nu}_{e}) = 0.993 \pm 0.019,$ $\mathcal{B}(W \to \tau \overline{\nu}_{\tau}) / \mathcal{B}(W \to e \overline{\nu}_{e}) = 1.063 \pm 0.027,$ $\mathcal{B}(W \to \tau \overline{\nu}_{\tau}) / \mathcal{B}(W \to \mu \overline{\nu}_{\mu}) = 1.070 \pm 0.026.$

$$\frac{2\mathcal{B}(W \to \tau \bar{\nu}_{\tau})}{\mathcal{B}(W \to e \bar{\nu}_{e}) + \mathcal{B}(W \to \mu \bar{\nu}_{\mu})} = 1.066 \pm 0.025 \ (2.6\sigma)$$

ALEPH 10.78 ± 0.29 DELPHI 10.55 ± 0.34 10.78 ± 0.32 L3 **OPAL** 10.71 ± 0.27 LEP W \rightarrow ev 10.71 ± 0.16 ALEPH 10.87 ± 0.26 DELPHI 10.65 ± 0.27 L3 10.03 ± 0.31 **OPAL** 10.78 ± 0.26 LEP W $\rightarrow \mu \nu$ 10.63 ± 0.15 **ALEPH** 11.25 ± 0.38 DELPHI 11.46 ± 0.43 L3 11.89 ± 0.45 **OPAL** 11.14 ± 0.31 LEP W $\rightarrow \tau v$ 11.38 ± 0.21 χ^2 /ndf = 6.3 / 9 LEP W \rightarrow Iv 10.86 ± 0.09 χ^2 /ndf = 15.4 / 11 10 11 12 $Br(W \rightarrow v)$ [%]

W Leptonic Branching Ratios

LFU in B system, pre-LHCb

• R(D^(*)), Babar reported deviation of ~3.2 σ

No deviation seen in FCNC b->sll decays

R(D^{*}) using munoic τ decays

- Measure R(D^{*}) using munoic τ decays
 - Pros: $\mathcal{B}(\tau \rightarrow \mu X)^{17.4\%}$, B vertex rec'ible
 - Cros: no τ vertex

R(D*), results

- 3D fits, $\mathcal{R}_{D^*} = 0.336 \pm 0.027 \pm 0.030$
 - Signal yields: 16 500 ± 1 670

R(D^{*}) using 3-prong τ decays

- Measure R(D^{*}) using 3-prong τ decays
 - Pros: $\mathcal{B}(\tau 3\pi^{\pm}X)^{9\%} + 4\%(\geq 1\pi^{0})$, B/τ vertex rec'ible
 - Cros: soft π^{\pm} , bkg; different from norm. decay

RD & LFU

R(D*), results

• Normalized to $B^0 \rightarrow D^{*-}3\pi$

 $R_{had}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} \qquad R(D^*) = R_{had}(D^*) \times \frac{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{\mathcal{B}(B^0 \to D^{*-} \mu^- \nu_{\mu})}$

- 3D fits, R(D*)=0.286 ± 0.019 ± 0.025 ± 0.021
 - Signal yields: 1273 ± 85

c.f. muonic: 16 500 ± 1 670

$R(J/\psi)$ using munoic τ decays

- Measure $R(J/\psi)$ using munoic τ decays
 - Pros: 3μ, $\mathcal{B}(\tau \rightarrow \mu X)^{-17.4\%}$
 - Cros: small $\sigma(B_c^+)$, no τ vertex
 - Run-I, 1400 \pm 300 signal (3 σ)

......

PV

[PRL 120 (2018) 121801]

B_c+→J/ψτν

J/ψ

 \mathbf{B}_{c}

Summary of LFU in b->clv decays

Deviations from SM seen by Babar/Belle/LHCb

R(K), introduction

Double ratio to control systematics

R(K), new results

 R_K 2.0 LHCb Include 2015+2016 ullet1.5 $R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$ 122 (2019) 191801] $\sim 2.5\sigma$ from SM 1.0BaBar 0.5 ▲ Belle LHCb Run 1 • LHCb Run 1 + 2015 + 2016 0.0 5 10 15 20 () [PRL $q^2 \,[{\rm GeV}^2/c^4]$ If instead the Run 1 and Run 2 were fitted separately: $R_{K \text{ Run } 1}^{\text{new}} = 0.717_{-0.071 - 0.016}^{+0.083 + 0.017}, \quad R_{K \text{ Run } 2} = 0.928_{-0.076 - 0.017}^{+0.089 + 0.020},$

 $R_{K \ \text{Run } 1}^{\text{old}} = 0.745_{-0.074}^{+0.090} \pm 0.036 \quad (\text{PRL113(2014)151601}),$

Compatibility taking correlations into account:

- Previous Run 1 result vs. this Run 1 result (new reconstruction selection): $< 1 \sigma$;
- Run 1 result vs. Run 2 result: 1.9σ .

rd & lfu

Jibo HE (UCAS)

R(K^{*0}), results with Run-I data

• Deviations from SM seen by LHCb ($\sim 2.4\sigma$)

Prospects

• LHCb upgrades (2025: 23 fb⁻¹, Upgrade-II: 300 fb⁻¹)

Observable	Current LHCb	LHCb 2025	Belle-II	LHCb Upgrade-II	ATLAS &CMS
$R_K(1 < q^2 < 6 \text{ GeV})$	0.1	0.025	0.036	0.007	
$R_{K^*}(1 < q^2 < 6 \text{ GeV})$	0.1	0.031	0.032	0.008	
R_{ϕ} , R_{pK}		0.08, 0.06		0.02, 0.02	
$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	90%	34%		10%	21%
$ au_{B^0_S o \mu^+ \mu^-}$	22%	8%		2%	4%?
$R(D^*)$	0.026	0.0072	0.005	0.002	
$R(J/\psi)$	0.24	0.071		0.02	

Summary

- LHCb performed the world-leading measurements of rare decays and LFU:
 - Radiative, e.g., $B_s^0 \rightarrow \phi \gamma$, $\Lambda_b^0 \rightarrow \Lambda \gamma$
 - Rare strange, e.g., $K_S^0 \rightarrow \mu^+ \mu^-$
 - Very rare decays, e.g., $B^0_{(s)} \rightarrow \mu^+ \mu^-$

- LFV, e.g.,
$$B^0_{(s)} \rightarrow \tau^+ \mu^-$$

- Electroweak penguin, e.g., $B^0 \to K^{*0} \mu^+ \mu^-$, $\mathcal{R}_{K^{(*0)}}$
- LFU in semi-leptonic decay, \mathcal{R}_{D^*}
- Your suggestions are always appreciated!