Overview of CP Violation

Liang Sun

武漢大學 WUHAN UNIVERSITY

CLHCP 2019 Oct. 23-27, 2019, Dalian University of Technology, Dalian

HF Overview of CP Violation

Liang Sun

武漢大学 WUHAN UNIVERSITY

CLHCP 2019 Oct. 23-27, 2019, Dalian University of Technology, Dalian

Outline

- CPV in charm decays
 - Direct & indirect CPV
 - ΔA_{CP} : first observation!
- CPV in b-hadron decays
 - γ combination
 - Measurements on ϕ_s
 - Multi-body charmless B/Λ_b decays
 - Radiative decays
- Summary & outlook

CP violation in charm

- Charm decays allow CP violation to be probed in the up-sector
 - Complementary to studies in neutral K and B_(s) systems
- Expected to be very small in SM (~ $10^{-3} 10^{-4}$)
 - Although theory predictions are not very precise due to large long-distance effects
- CP asymmetries $A_{CP} = \frac{\Gamma(D^0 \to f) \Gamma(D^0 \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to \overline{f})}$ are sensitive to
 - Direct CP violation a_{CP}^{dir} -
 - Indirect CP violation *a*_{CP}^{ind}

(CP violation in mixing or in the

interference between mixing and decay)

ΔA_{CP} measurement

PV

 D^0

 π_s

- LHCb uses full Run2 5.9 fb-1 data
- Tagging of initial flavor of D^o
 - **Prompt**: coming from PV, i.e., $D^{*+} \rightarrow D^{0}\pi^{+}$
 - **Semileptonic**: coming from B decays, i.e., $B \rightarrow D^{0}\mu^{-}X$
- Raw asymmetry for tagged D⁰ decays to a final state f (K⁺K⁻, π ⁺ π ⁻):

$$A_{\rm raw}(f) = \frac{N(D^0 \to f) - N(\overline{D}{}^0 \to f)}{N(D^0 \to f) + N(\overline{D}{}^0 \to f)}$$

• With many systematics canceled at first order, it is relatively easy to measure time-integrated difference in CP asymmetry

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

ΔA_{CP} measurement

- LHCb uses full Run2 5.9 fb-1 data
- Tagging of initial flavor of D^o
 - **Prompt**: coming from PV, i.e., $D^{*+} \rightarrow D^{0}\pi^{+}$
 - **Semileptonic**: coming from B decays, i.e., $B \rightarrow D^{0}\mu$ -X
- Raw asymmetry for tagged D⁰ decays to a final state f (K+K-, π + π -):

$$A_{\rm raw}(f) = \frac{N(D^0 \to f) - N(\overline{D}{}^0 \to f)}{N(D^0 \to f) + N(\overline{D}{}^0 \to f)}$$

 With many systematics canceled at first order, it is relatively easy to measure time-integrated difference in CP asymmetry

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

[PRL 122 (2019) 211803]

Observation of charm CPV

• From full Run2 5.9 fb⁻¹ data:

$$egin{aligned} \Delta A_{CP}^{\pi-tag} &= (-18.2 \pm 3.2 \pm 0.9) imes 10^{-4}, \ \Delta A_{CP}^{\mu-tag} &= (-9 \pm 8 \pm 5) imes 10^{-4} \end{aligned}$$

Combination with Run1 results:

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

- Observation of CP violation with 5.3σ significance!

[PRL 122 (2019) 231802]

LHCb

2.5

 $m_{\perp}^{2} \, [\text{GeV}^{2}/c^{4}]$

2

Oscillations of charm mesons in $D^0 \rightarrow K_s^{0}\pi\pi$

 n_{-}^{2} [GeV²/ c^{4}

1.5

0.5

0.5

1.5

- D^o mass eigenstates and their weak eigenstates:
 - $-\left|\mathsf{D}_{1,2}
 ight
 angle=\mathsf{p}\left|\mathsf{D}^{0}
 ight
 angle\pm\mathsf{q}\left|\overline{\mathsf{D}^{0}}
 ight
 angle$
 - $m_{1,2}$ ($\Gamma_{1,2}$) as mass (width) of $D_{1,2}$
- Mixing parameters: $x \equiv \frac{m_1 m_2}{\Gamma}$; $y \equiv \frac{\Gamma_1 \Gamma_2}{2\Gamma}$
- x determines the oscillation rate
 - x is very small for D^o, but x and CPV can be enhanced by NP
 - CPV can occur in the mixing \rightarrow oscillation rates differ for D⁰ and \overline{D}^0
- LHCb Run1, tagged $D^0 \rightarrow K_s^0 \pi \pi$ decay yields
 - Prompt: ~1.3M, Semileptonic: ~1M
- $D^{\scriptscriptstyle 0} \to K_s{}^{\scriptscriptstyle 0}\pi\pi$ has rich resonance structures

(4.5 MeV

Candidates per

150

100

50

[PRL 122 (2019) 231802]

Oscillations of charm mesons in $D^0 \rightarrow K_s^{0}\pi\pi$

- Model-independent approach (bin-flip method) [PRD 99 (2019) 012007]
 - To avoid efficiency modeling
- Results with Run1 data:

 $y_{CP} = [0.74 \pm 0.36 (stat) \pm 0.11 (syst)]\%$ $\Delta y = [-0.06 \pm 0.16 (stat) \pm 0.03 (syst)]\%$ $x_{CP} = [0.27 \pm 0.16 (stat) \pm 0.04 (syst)]\%$ $\Delta x = [-0.053 \pm 0.070 (stat) \pm 0.022 (syst)]\%$

- Best precision on x from a single experiment!
- Combination with current global knowledge gives x > 0 at more than 3σ
 - First evidence that masses of D^o eigenstates differ

$A_{\Gamma} \text{ in } D^0 \rightarrow K^+K^-, \pi^+\pi^-$: Prompt

• A_{Γ} probes CPV in mixing and interference $A_{CP}(f, t) \approx A_{CP}^{\text{decay}}(f) - \boxed{A_{\Gamma}} \frac{t}{\tau_{D^0}}$

– A linear fit to A_{CP} in bins of D^o decay time extracts A_{Γ} as slope parameter

• Run2 1.9fb⁻¹ (2015-2016) LHCb data have:

 $A_{\Gamma}(D^0 \to K^+ K^-) = (1.3 \pm 3.5 \pm 0.7) \times 10^{-4}$ $A_{\Gamma}(D^0 \to \pi^+ \pi^-) = (11.3 \pm 6.9 \pm 0.8) \times 10^{-4}$

 \bullet $A_{\scriptscriptstyle \Gamma}$ does not depend on D decay channel, the

two values can be combined

 $A_{\Gamma}(D^0 \rightarrow h^+h^-) = (3.4 \pm 3.1 \pm 0.6) \times 10^{-4}$ $(h = K, \pi)$

Combining with Run1 prompt results [PRL 118 (2017) 261803]:

$$A_{\Gamma}(D^0 → h^+h^-) = (0.9 \pm 2.1 \pm 0.7) × 10^{-4}$$

(h = K, π)

A_r is consistent with SM!

A_{Γ} in $D^{0} \rightarrow K^{+}K^{-}$, $\pi^{+}\pi^{-}$: Semileptonic

• A_{Γ} probes CPV in mixing and interference $A_{CP}(f,t) \approx A_{CP}^{\text{decay}}(f) - \boxed{\mathbf{A}_{\Gamma}} \frac{t}{\tau_{D^0}}$ - A linear fit to A_{CP} in bins of D⁰ decay time

extracts A_r as slope parameter

• With Run2 5.4 fb⁻¹ (2016-2018) data we have

 $A_{\Gamma}(K^{+}K^{-}) = (-4.3 \pm 3.6 \pm 0.5) \times 10^{-4}$ $A_{\Gamma}(\pi^{+}\pi^{-}) = (-2.2 \pm 7.0 \pm 0.8) \times 10^{-4}$

• Combining with Run1 3 fb-1 prompt+SL results: [PRL 118 (2017) 261803, JHEP 04 (2015) 043]

 $A_{\Gamma}(K^{+}K^{-}) = (-4.4 \pm 2.3 \pm 0.6) \times 10^{-4}$ $A_{\Gamma}(\pi^{+}\pi^{-}) = (-2.5 \pm 4.3 \pm 0.7) \times 10^{-4}$

• Assuming A_{Γ} to be universal, the averaged result:

$$A_{\Gamma}(D^0 \rightarrow h^+h^-) = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$$

 $(h = K, \pi)$

A_r is consistent with SM!

Search for CPV in $D_{(s)}^{+}$ decays

- CPV can arise from interference between $c \rightarrow d\overline{d}u$ and $c \rightarrow s\overline{s}u$
- Simultaneous fits to extract raw asymmetries

$$A_{CP}(D_s^+ \to K_S^0 \pi^+) \approx A(D_s^+ \to K_S^0 \pi^+) - A(D_s^+ \to \phi \pi^+)$$

$$A_{CP}(D^+ \to K_S^0 K^+) \approx A(D^+ \to K_S^0 K^+) - A(D^+ \to K_S^0 \pi^+)$$

$$- A(D_s^+ \to K_S^0 K^+) + A(D_s^+ \to \phi \pi^+)$$

$$A_{CP}(D^+ \to \phi \pi^+) \approx A(D^+ \to \phi \pi^+) - A(D^+ \to K_S^0 \pi^+)$$

• Results with Run2 3.8 fb⁻¹ data:

 $\begin{array}{ll} \mathsf{A}_{\mathsf{CP}}(\mathsf{D}_{\mathsf{s}}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\pi^{+}) &= (1.3\pm1.9\pm0.5)\times10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\mathsf{K}^{+}) &= (-0.09\pm0.65\pm0.48)\times10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+}\to\phi\pi^{+}) &= (0.05\pm0.42\pm0.29)\times10^{-3} \end{array}$

• Results with Run1 & Run2 combined:

 $\begin{array}{ll} \mathsf{A}_{\mathsf{CP}}(\mathsf{D}_{\mathsf{s}}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\pi^{+}) &= (1.6\pm1.7\pm0.5)\times10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\mathsf{K}^{+}) &= (-0.04\pm0.61\pm0.45)\times10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+}\to\phi\pi^{+}) &= (0.03\pm0.40\pm0.29)\times10^{-3} \end{array}$

Best A_{CP} measurements on these channels!

[JHEP 02 (2019) 126]

 $\sum c_k A_k(\boldsymbol{x})$

 $S(\boldsymbol{x};\boldsymbol{c}) =$

$CPV \ in \ D^0 \to K^+K^-\pi^+\pi^-$

- Large number of interfering amplitudes could enhance CPV in multi-body D $^{\circ}$ decays
- 3 fb-1 Run1 LHCb data
- 160 k D^ signal candidates from production mode of $B \to D^o \mu^- X$
- Using isobar model, N=26 amplitudes selected to describe signal in 5D phase space

[JHEP 02 (2019) 126]

 $S(\boldsymbol{x};\boldsymbol{c}) = \left|\sum_{k=1}^{N} c_k A_k(\boldsymbol{x})\right|$

$CPV \ in \ D^0 \to K^+K^-\pi^+\pi^-$

- Large number of interfering amplitudes could enhance CPV in multi-body D^o decays
- 3 fb-1 Run1 LHCb data
- 160 k D^ signal candidates from production mode of $B \to D^o \mu^{\text{-}} X$
- Using isobar model, N=26 amplitudes selected to describe signal in 5D phase space
- Simultaneous fit of D⁰ and \overline{D}^{0} decays to extract CPV parameters for each amplitude
- All parameters consistent with CP conservation with a sensitivity ranging from 1% to 15%

CP violation in b-hadron decays

- CKM matrix: origin of CPV in SM
- Test of the Unitarity Triangle: measuring CKM angle γ
- γ Can be measured using exclusively tree-level decays such as B \rightarrow Dh (h = K, K*, π , $\pi\pi$)

[LHCb-CONF-2018-002]

LHCb γ combination

- Combing many tree-level determinations of γ
 - New and updated results using Run2 2 fb-1 data
 - Analyses with full Run2 6 fb-1 data yet to come
- The γ world average is currently dominated by the 2018 LHCb combination
 - LHCb combination is dominated by B+ decays
 - Tension (2 σ) between B_{s^0} and B^+ results
- New inputs from the ADS/GLW analysis of $-B^0 \rightarrow DK^{*0}$ (D $\rightarrow KK$, K π , $\pi\pi$, K $\pi\pi\pi$, $\pi\pi\pi\pi$) [JHEP 08 (2019) 041] to be added to the combination

- Will lead to reduction in the yellow region!-

Direct BESIII measurements on strong phase parameters in D decays are important for LHCb y measurements

	D decay	D decay	Method	Ref.	Dataset	
	$B^+ \rightarrow DK^+$	$D \rightarrow h^+ h^-$	GIW	[14]	Bun 1 & 2	-
	$B^+ \rightarrow DK^+$	$D \rightarrow h^+ h^-$	ADS	[15]	Run 1 & 2	
	$B^+ \rightarrow DK^+$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[15]	Run 1	
	$B^+ \rightarrow DK^+$	$D \rightarrow h^+ h^- \pi^0$	GLW/ADS	$\begin{bmatrix} 16 \end{bmatrix}$	Run 1	
	$B^+ \rightarrow DK^+$	$D \rightarrow K_{c}^{0}h^{+}h^{-}$	GGSZ	[17]	Run 1	
	$B^+ \to DK^+$	$D \rightarrow K_{s}^{\vec{0}}h^{+}h^{-}$	GGSZ	[18]	$\operatorname{Run} 2$	
_	$\blacktriangleright B^+ \rightarrow DK^+$	$D \rightarrow K_{s}^{0}K^{+}\pi^{-}$	GLS	[19]	Run 1	
	$B^+ \to D^* K^+$	$D \rightarrow h^{+}h^{-}$	GLW	[14]	$\operatorname{Run} 1 \ \& \ 2$	
	$B^+ \to DK^{*+}$	$D \rightarrow h^+ h^-$	GLW/ADS	[20]	$\mathrm{Run} \ 1 \ \& \ 2$	
	$B^+ \to DK^{*+}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	GLW'ADS	[20]	$\operatorname{Run} 1 \& 2$	
	$B^+ \rightarrow D K^+ \pi^+ \pi^-$	$D \rightarrow h^+ h^-$	GLW/ADS	[21]	$\operatorname{Run} 1$	
	$B^0 ightarrow DK^{*0}$	$D \to K^+ \pi^-$	ADS	[22]	Run 1	
	$B^0 \rightarrow D K^+ \pi^-$	$D \rightarrow h^+ h^-$	$\operatorname{GLW-Dalitz}$	[23]	Run 1	
	$B^0 \to D K^{*0}$	$D ightarrow K_{ m s}^0 \pi^+ \pi^-$	GGSZ	[24]	$\operatorname{Run} 1$	
	$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	[25]	$\operatorname{Run} 1$	
	$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+\!\to K^+\pi^-\pi^+$	TD	[26]	Run 1	_
						Г
					-	
7		idination			LHCb	-
	$\gamma = (74.$	$(0^{+5.0}_{5.8})^{\circ}$			LHCb Preliminary	-
	$0.8 \begin{bmatrix} \gamma = (74) \\ \gamma = (74) \end{bmatrix}$	$(0^{+5.0}_{-5.8})^{\circ}$]	LHCb Preliminary	-
	$0.8 = \frac{\gamma}{\gamma} = (74)$	$(0^{+5.0}_{-5.8})^{\circ}$]	LHCb Preliminary	
	$0.8 = \frac{\gamma}{\rho_s^0} = (74.5)$	$(.0^{+5.0}_{-5.8})^{\circ}$]	LHCb Preliminary	
	$0.8 - \gamma = (74)$ $B_s^o \text{ deca}$	$(0^{+5.0}_{-5.8})^{\circ}$			LHCb Preliminary	
	$0.8 - \gamma = (74)$ $B_s^0 \text{ deca}$ $0.6 - B^0 \text{ deca}$	$.0^{+5.0}_{-5.8}$)° ays		j	LHCb Preliminary	
	$0.8 - \gamma = (74)$ $B_s^0 \operatorname{deca}$ $0.6 - B^0 \operatorname{deca}$ $B^{\dagger} \operatorname{deca}$	(0,0)			LHCb Preliminary	
	$0.8 - \gamma = (74)$ $B_s^0 \operatorname{deca}$ $B_s^0 \operatorname{deca}$ $B^0 \operatorname{deca}$ $B^+ \operatorname{deca}$ $Combined$	$0.0^{+5.0}_{-5.8}$)° ays ays ays nation]	LHCb Preliminary	
	$0.8 - \gamma = (74)$ $B_s^0 \operatorname{deca}$ $B_s^0 \operatorname{deca}$ $B^0 \operatorname{deca}$ $B^+ \operatorname{deca}$ $0.4 - 0.2 \operatorname{Combin}$	$0.0^{+5.0}_{-5.8}$)° ays ays ays nation		j	LHCb	
	$0.8 - \gamma = (74)$ $P = (74)$ $B_s^0 \operatorname{deca}$ $B^0 \operatorname{deca}$ $B^+ \operatorname{deca}$ $0.4 - 68.3\%$	$0.0^{+5.0}_{-5.8}$)° ays ays ays nation			LHCb Preliminary	
	$0.8 - \gamma = (74)$ $= B_s^0 \operatorname{deca}$ $0.6 - B^0 \operatorname{deca}$ $B^0 \operatorname{deca}$ $= B^+ \operatorname{deca}$ $0.4 - 68.3\%$	ays ays ays nation			LHCb Preliminary	
	$0.8 = \gamma = (74)$ $P = (74)$ $B_s^0 \operatorname{deca}$ $B^0 \operatorname{deca}$ $B^+ \operatorname{deca}$ $0.4 = 68.3\%$	(0) (0)			LHCb Preliminary	
	$\begin{array}{c} 0.8 \\ - \end{array} \\ \gamma = (74) \\ B_s^0 deca \\ 0.6 \\ - \end{array} \\ B^0 deca \\ B^+ deca \\ 0.4 \\ - \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ 0.4 \\ - \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ 0.4 \\ - \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ 0.4 \\ - \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ \end{array} \\ \end{array} $	ays ays ays nation			LHCb Preliminary	
	$0.8 - \gamma = (74)$ $0.6 - B^{0} deca$ $0.6 - B^{0} deca$ $0.4 - 68.3\%$ $0.2 - 68.3\%$	ays ays ays nation			LHCb Preliminary	
	$\begin{array}{c} 0.8 \\ - \end{array} \\ \gamma = (74) \\ P^{0} $	(0)			LHCb Preliminary	
	$\begin{array}{c} 0.8 \\ - \\ \gamma = (74) \\ B_s^0 deca \\ 0.6 \\ - \\ B^0 deca \\ B^+ deca \\ 0.4 \\ - \\ 68.3\% \\ 0.2 \\ - \\ 95.5\% \\ 0 \\ 0 \end{array}$	$0^{+5.0}_{-5.8}$)° ays ays ays nation	100		LHCb Preliminary	
	$\begin{array}{c} 0.8 \\ - \end{array} \\ \gamma = (74) \\ 0.6 \\ - \end{array} \\ \begin{array}{c} B^{o} & \text{deca} \\ B^{o} & \text{deca} \\ 0.6 \\ - \end{array} \\ \begin{array}{c} B^{o} & \text{deca} \\ B^{o} & \text{deca} \\ 0 \\ - \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 0.8 \\ - \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0.8 \\ - \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\	$0^{+5.0}_{-5.8}$)° ays ays ays nation 50	100		LHCb Preliminary 1	

γ [°]

\boldsymbol{B}_{s} mixing phase $\boldsymbol{\varphi}_{s}$

• Mixing-induced CPV phase in $b \rightarrow c\overline{c}s$ processes

$$\phi_{\rm s} = -\arg(\lambda) = \phi_{\rm mix} - 2 \phi_{\rm dec} \approx -2\beta_{\rm s}$$

- Well predicted in SM, NP could bring in sizable contribution

- Accessed through measurements of time-dependent CP asymmetries in B $_s$ decays to CP eigenstates e.g. $B_s \to J/\psi \varphi$ with
 - Good decay time resolution (fast B_s oscillation)
 - Efficient flavor tagging power (~5% in LHCb)
 - Angular analysis to disentangle CP-even and CP-odd final states

• World average, then dominated by LHCb Run 1 results, compatible with SM

Status of φ_{s} before Moriond EW 2019

 ϕ_{dec}

B

 $\beta_s \equiv \arg\left[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)\right]$

 $\lambda \equiv \arg \left[(q/p) \left(\overline{A}/A \right) \right]$

B⁰

[EPJC 79 (2019) 706, PLB 797 (2019) 134789]

LHCb

Measurements of ϕ_s with $B_s \rightarrow J/\psi hh$

• Update with 2 fb⁻¹ Run2 data using $B_s \rightarrow J/\psi(\mu\mu)KK$ [EPJC 79 (2019) 706] and $B_s \rightarrow J/\psi(\mu\mu)\pi\pi$ decays [PLB 797 (2019) 134789] See Wenhua Hu's

[ATLAS-CONF-2019-009]

Measurement of ϕ_s with $B_s \rightarrow J/\psi KK$

• Update with 80.5 fb⁻¹ Run2 (2015-2017) data using $B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$ decays

Measurement of CPV in $B_s \rightarrow \phi \phi$

- Enhanced sensitivity to NP since this charmless decay is dominated by b→sss penguin loop
- Mixing with ${\rm B}_{\rm s}$ oscillation could give rise to time-dependent CPV
 - CPV phase $\phi_s s\bar{ss}$ predicted < 0.02 rad

[PRD 80 (2009) 114026]

 Time-dependent angular analysis to disentangle CP eigenstates SS, SV, VV with Run1 + Run2 (2 fb⁻¹) data

 $\begin{array}{lll} \phi_s^{s\overline{s}s} &=& -0.073 \pm 0.115 \, ({\rm stat}) \pm 0.027 \, ({\rm syst}) \ {\rm rad}, \\ |\lambda| &=& 0.99 \pm \ 0.05 \, ({\rm stat}) \pm 0.01 \, ({\rm syst}). \end{array}$

[PRL 123 (2019) 081802]

CPV measurements in $B_s^0 \rightarrow \phi \gamma$

• With 3fb⁻¹ Run1 data, and using $B^0 \rightarrow K^{*0}\gamma$ as reference channel, LHCb reports:

 $S_{\phi\gamma} = 0.43 \pm 0.30 \pm 0.11$ $C_{\phi\gamma} = 0.11 \pm 0.29 \pm 0.11$ $\mathcal{A}_{\phi\gamma}^{\Delta} = -0.67 \,{}^{+0.37}_{-0.41} \pm 0.17$

All consistent with SM, with S & C as first measurements

See Jibo He's talk right after this one

 \mathbf{P}^0

CPV measurements in $B^0 \rightarrow D^{*\pm}D^{\mp}$

- b → ccd transition with contributions from tree, penguin & exchange diagrams
- Expecting mixing-induced CPV and possible direct CPV contributions
- Using four time-dependent decay rates for B^0 and \overline{B}^0 to f and \overline{f} final states to measure 5 parameters:

$$f = D^{*+}D^{-}$$

$$S_{D^{*}D} = \frac{1}{2}(S_{D^{*+}D^{-}} + S_{D^{*-}D^{+}})$$

$$C_{D^{*}D} = \frac{1}{2}(C_{D^{*+}D^{-}} + C_{D^{*-}D^{+}})$$

$$A_{D^{*}D} = A_{f\bar{f}}$$

$$\Delta S_{D^{*}D} = \frac{1}{2}(S_{D^{*+}D^{-}} - S_{D^{*-}D^{+}})$$

$$\Delta C_{D^{*}D} = \frac{1}{2}(C_{D^{*+}D^{-}} - C_{D^{*-}D^{+}})$$

$$\frac{\mathrm{d}\Gamma_{\bar{B}^0,f}(t)}{\mathrm{d}t} = \frac{\mathrm{e}^{-t/\tau_d}}{8\tau_d} (1 + A_{f\bar{f}}) \Big[1 + S_f \sin(\Delta m_d t) - C_f \cos(\Delta m_d t) \Big]$$

 R^0

CPV measurements in $B^0 \rightarrow D^{*\pm}D^{\mp}$

- b → ccd transition with contributions from tree, penguin & exchange diagrams
- Expecting mixing-induced CPV and possible direct CPV contributions
- Using four time-dependent decay rates for B^0 and \overline{B}^0 to f and \overline{f} final states to measure 5 parameters:

$$f = D^{*+}D^{-}$$

$$S_{D^{*}D} = \frac{1}{2}(S_{D^{*+}D^{-}} + S_{D^{*-}D^{+}})$$

$$C_{D^{*}D} = \frac{1}{2}(C_{D^{*+}D^{-}} + C_{D^{*-}D^{+}})$$

$$A_{D^{*}D} = A_{f\bar{f}}$$

$$\Delta S_{D^{*}D} = \frac{1}{2}(S_{D^{*+}D^{-}} - S_{D^{*-}D^{+}})$$

$$\Delta C_{D^{*}D} = \frac{1}{2}(C_{D^{*+}D^{-}} - C_{D^{*-}D^{+}})$$

$$\frac{\mathrm{d}\Gamma_{\bar{B}^0,f}(t)}{\mathrm{d}t} = \frac{\mathrm{e}^{-t/\tau_d}}{8\tau_d} (1 + A_{f\bar{f}}) \Big[1 + S_f \sin(\Delta m_d t) - C_f \cos(\Delta m_d t) \Big]$$

CPV measurements in $B^0 \rightarrow D^{*\pm}D^{\mp}$

- b → ccd transition with contributions from tree, penguin & exchange diagrams
- Expecting mixing-induced CPV and possible direct CPV contributions
- Using four time-dependent decay rates for B^0 and \overline{B}^0 to f and \overline{f} final states to measure 5 parameters:

$$\begin{split} S_{D^*D} &= -0.861 \pm 0.077 \,(\text{stat}) \pm 0.019 \,(\text{syst}) \\ \Delta S_{D^*D} &= 0.019 \pm 0.075 \,(\text{stat}) \pm 0.012 \,(\text{syst}) \\ C_{D^*D} &= -0.059 \pm 0.092 \,(\text{stat}) \pm 0.020 \,(\text{syst}) \\ \Delta C_{D^*D} &= -0.031 \pm 0.092 \,(\text{stat}) \pm 0.016 \,(\text{syst}) \\ A_{D^*D} &= 0.008 \pm 0.014 \,(\text{stat}) \pm 0.005 \,(\text{syst}) \end{split}$$

Main correlations:

Preliminary

 $\rho(S_{D^*D}, C_{D^*D}) = 0.44$

$$\rho(\Delta S_{D^*D}, \Delta C_{D^*D}) = 0.46$$

All results are compatible with, and more precise than previous measurements

[arXiv:1909.05211, arXiv:1909.05212]

CPV in $B^+ \rightarrow \pi^+\pi^+\pi^-$

• With Run1 3fb⁻¹ data, LHCb observes several sources of CPV by performing the amplitude analysis:

Significance CPV observed in the decay amplitudes associated with $f_2(1270)$ and low mass $\pi^+\pi^-$ s-wave

[arXiv:1909.05211, arXiv:1909.05212]

CPV in $B^+ \rightarrow \pi^+ \pi^+ \pi^-$

• With Run1 3fb⁻¹ data, LHCb observes several sources of CPV by performing the amplitude analysis:

First observation of CPV characteristic of interference between the spin-1 p(770) and spin-0 S-wave

[arXiv:1909.05211, arXiv:1909.05212]

CPV in $B^+ \rightarrow \pi^+\pi^+\pi^-$

 With Run1 3fb⁻¹ data, LHCb observes several sources of CPV by performing the amplitude analysis: p(770) region

First observation of CPV characteristic of interference between the spin-1 p(770) and spin-0 S-wave

CP and P violation in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$

- CPV yet to be observed in baryon decays
- With 6.6 fb⁻¹ Runs1+2 data, LHCb reports the first observation of P violation in b-baryon decay
 - No evidence for CPV found, an update to the previous LHCb analysis [Nat. Phy. 13 (2017) 391]
 - Energy test method gives consistent results

CP and P violation in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$

- CPV yet to be observed in baryon decays
- With 6.6 fb⁻¹ Runs1+2 data, LHCb reports the first observation of P violation in b-baryon decay
 - No evidence for CPV found, an update to the previous LHCb analysis [Nat. Phy. 13 (2017) 391]
 - Energy test method gives consistent results

Triple-product asymmetries:

 $\sqrt{\vec{n}}$

$$C_{\widehat{T}} = p_{p^+} \cdot (p_{\pi_{\text{fast}}^-} \times p_{\pi^+})$$

$$A_{\widehat{T}} = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)}, \qquad \overline{A}_{\widehat{T}} = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)},$$

$$a_P^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} + \overline{A}_{\widehat{T}} \right), a_{CP}^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right)$$

 (\vec{n})

 \vec{n}

[LHCb-PUB-2018-009]

Prospects of LHCb

• Major upgrade phases

- Upgrade (2020-2023) will provide 3x larger dataset
- Upgrade (2025-) will be for HL-LHC to collect > 300/fb (30x of current level)

Summary

- For the past few years, LHCb has been quite successful in CPV searches, while ATLAS and CMS have shown their capabilities and potential in the field of heavy flavor physics
 - LHCb highlights 2019: **first observations** of CPV in D^o decays, and P violation in b-baryon decay, etc.
- Many interesting results from LHC experiments based on Runs1-2 data are still in the pipeline, so stay tuned!
- LHCb upgrade opens up possibilities to many improvements in precision, so interesting times are still ahead on searching for CPV beyond SM

[Int. J. Mod. Phys. A30 (2015)1530022]

Detector performance

LHCb dataset

Most of the present analyses use:

- Run I: 1.0 fb⁻¹ @ 7 TeV (2011) + 2.0 fb⁻¹ @ 8 TeV (2012)
- Run II: 0.3 fb⁻¹ (2015) + 1.7 fb⁻¹ (2016)

+ 1.7 fb⁻¹ (2017) + 2.2 fb⁻¹ (2018) @ 13 TeV

Test of the Unitarity Triangle: measuring CKM angle γ

- Can be measured using exclusively tree-level decays such as $B \rightarrow Dh$ (h = K, K^{*}, π , $\pi\pi$)
 - Interference between $b \rightarrow c$ (favored) and $b \rightarrow u$ (suppressed) transitions

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) \qquad \qquad \frac{A_{\sup}}{A_{fav}} = r_B^{Dh}e^{\delta_B^{Dh}\pm\gamma}$$

where \mathbf{r} is the ratio of magnitudes and $\boldsymbol{\delta}$ the strong phase difference

- Can be obtained via time-dependent or time-integrated methods (GLW, ADS, ...)
 - Best precision achieved by combing measurements from many decay modes

Flavor tagging [PoS(LHCP2018)230]

• Tagging in Run 2 improved \Rightarrow 30% higher tagging power than Run 1 $\varepsilon_{tag}(B_s^0 \rightarrow J/\psi K^+K^-) = 4.73 \pm 0.34\%$ (vs $\approx 3.73\%$ in Run 1) $\varepsilon_{tag}(B_s^0 \rightarrow J/\psi \pi^+\pi^-) = 5.06 \pm 0.38\%$ (vs $\approx 3.89\%$ in Run 1)

LHCb $\boldsymbol{\varphi}_{s}$ combination

[PRL 123 (2019) 081802]

 B_s^0

 \bar{B}_{s}^{0}

CPV measurements in $B_s^0 \rightarrow \phi \gamma$

- In $b \rightarrow s\gamma$ transition, γ is expected in SM to be purely left-handed due to angular momentum conservation, however NP with RH photon may contribute
- Time-dependent rates give access to photon polarization:

$$\Gamma_{B_{S}^{0} \to \Phi_{\gamma}}(t) \propto \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + C\cos(\Delta m_{s}t) - S\sin(\Delta m_{s}t) \right]$$

$$\Gamma_{\bar{B}_{S}^{0} \to \Phi_{\gamma}}(t) \propto \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - C\cos(\Delta m_{s}t) + S\sin(\Delta m_{s}t) \right]$$

Depend on
$$C_{T} \text{ and } C_{2}'$$

- $-\Delta\Gamma_s \& \Delta m_s$: decay width and mass differences between B_{s^0} mass eigenstates
- C: measure of direct CPV, S: measure of B_s^o mixing

HFLAV updates

World average dominated by LHCb results

provided by the courtesy of M. Gersabeck

Model-independent Bin-flip method

Phys. Rev. Lett. 122, 231802

- Bin Dalitz into ±b about
 m²₊ = m²₋
- D decay time into bins j
- Measure ratio of signal in -b and +b in bin j

 $R_{bj}^{\pm} = \frac{r_b \left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2)\right] + \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_b^*(z_{CP} \pm \Delta z)\right]}{\left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2)\right] + r_b \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_b^*(z_{CP} \pm \Delta z)\right]},$ where $z_{CP} \pm \Delta z = -\left(\frac{q}{p}\right)^{\pm}(y + ix)$ and r_b is ratio without mixing $\mathbf{X}_b = \mathbf{c}_b - \mathbf{i}\mathbf{s}_b$ $\frac{R^{\pm} \text{ changes with time} \Rightarrow \text{ Mixing}}{R^+ \neq R^- \Rightarrow \text{ Indirect CPV}}$

LHCb upgrade and beyond

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K \ (1 < q^2 < 6} \ \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ [275]$	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}	_	0.08,0.06,0.18	-	0.02, 0.02, 0.05	-
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 [606]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	$49 \text{ mrad} [\overline{44}]$	$14 \mathrm{mrad}$	_	$4 \mathrm{mrad}$	22 mrad [607]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	$170 \text{ mrad} [\overline{49}]$	$35 \mathrm{\ mrad}$	-	$9 \mathrm{\ mrad}$	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	$154 \text{ mrad} [\overline{94}]$	39 mrad		$11 \mathrm{mrad}$	Under study [608]
$a_{\rm sl}^s$	33×10^{-4} [211]	$10 imes 10^{-4}$	-	$3 imes 10^{-4}$	_
$ ec{V}_{ub} / V_{cb} $	6% [201]	3%	1%	1%	-
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_	10%	21% [609]
$\tau_{B^0 \rightarrow \mu^+ \mu^-}$	22% [264]	8%	_ 1	2%	-
$S_{\mu\mu}^{s}$	-	_	_	0.2	_
$b \to c \ell^- \bar{\nu}_l { m LUV} { m studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	-	0.02	_
<u>Charm</u>					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [610]	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	$3.5 imes 10^{-4}$	$1.0 imes 10^{-5}$	-
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	$3.2 imes 10^{-4}$	$4.6 imes 10^{-4}$	$8.0 imes10^{-5}$	_
$x\sin\phi$ from multibody decays	-	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi)~1.2 imes 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_

[PRL 122 (2019) 191803]

Amplitude	$A_{ c_k }$ [%]	$\Delta \arg(c_k)$ [%]	$A_{\mathcal{F}_k}$ [%]
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=0}$	0 (fixed)	0 (fixed)	$-1.8\pm~1.5\pm0.2$
$D^0 \to K_1(1400)^+ K^-$	$-1.4 \pm 1.1 \pm 0.2$	$1.3 \pm 1.5 \pm 0.3$	$-4.5\pm\ 2.1\pm0.3$
$D^0 \to [K^- \pi^+]_{L=0} [K^+ \pi^-]_{L=0}$	$1.9 \pm 1.1 \pm 0.3$	$-1.2 \pm 1.3 \pm 0.3$	$2.0 \pm 1.8 \pm 0.7$
$D^0 \to K_1(1270)^+ K^-$	$-0.4 \pm 1.0 \pm 0.2$	$-1.1 \pm 1.4 \pm 0.2$	$-2.6 \pm \ 1.7 \pm 0.2$
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=0}$	$-1.3 \pm 1.3 \pm 0.3$	$-1.7 \pm 1.5 \pm 0.2$	$-4.3\pm\ 2.2\pm0.5$
$D^0 \to K^* (1680)^0 [K^- \pi^+]_{L=0}$	$2.2 \pm 1.3 \pm 0.3$	$1.4 \pm 1.5 \pm 0.2$	$2.6 \pm 2.2 \pm 0.4$
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=1}$	$-0.4 \pm 1.7 \pm 0.2$	$3.7 \pm 2.0 \pm 0.2$	$-2.6\pm\ 3.2\pm0.3$
$D^0 \to K_1(1270)^- K^+$	$2.6 \pm 1.7 \pm 0.4$	$-0.1 \pm 2.1 \pm 0.3$	$3.3 \pm 3.5 \pm 0.5$
$D^0 \to [K^+K^-]_{L=0}[\pi^+\pi^-]_{L=0}$	$3.5 \pm 2.5 \pm 1.5$	$-5.5 \pm 2.6 \pm 1.6$	$5.1 \pm 5.1 \pm 3.1$
$D^0 \to K_1(1400)^- K^+$	$0.2 \pm 2.9 \pm 0.7$	$2.5\pm3.5\pm1.0$	$-1.3\pm \ 6.0\pm 1.0$
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=0}$	$4.0 \pm 2.7 \pm 0.8$	$-5.4 \pm 2.8 \pm 0.8$	$6.2 \pm 5.2 \pm 1.5$
$D^0 \to [\overline{K^*}(1680)^0 K^*(892)^0]_{L=1}$	$_1 - 0.4 \pm 2.1 \pm 0.3$	$0.4 \pm 2.1 \pm 0.3$	$-2.5\pm\ 3.9\pm0.4$
$D^0 \to \overline{K^*}(1680)^0 [K^+\pi^-]_{L=0}$	$2.1 \pm 2.0 \pm 0.6$	$-1.8 \pm 2.2 \pm 0.3$	$2.4 \pm \ 3.7 \pm 1.1$
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=2}$	$0.8 \pm 1.9 \pm 0.3$	$-1.2 \pm 2.0 \pm 0.5$	$-0.1\pm \ 3.3\pm 0.5$
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=2}$	$-0.6 \pm 2.5 \pm 0.4$	$0.6\pm2.6\pm0.4$	$-3.0\pm~5.0\pm0.7$
$D^0 \to \phi(1020)[\pi^+\pi^-]_{L=0}$	$3.8 \pm 3.1 \pm 0.7$	$-0.5 \pm 3.9 \pm 0.7$	$5.8 \pm 6.1 \pm 0.8$
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=1}$	$1.6 \pm 2.8 \pm 0.5$	$0.7\pm3.0\pm0.4$	$1.3 \pm 5.3 \pm 0.6$
$D^0 \to [\phi(1020)\rho(1450)^0]_{L=1}$	$4.6 \pm 4.1 \pm 0.6$	$9.3 \pm 3.3 \pm 0.6$	$7.5 \pm 8.5 \pm 1.1$
$D^0 \to a_0(980)^0 f_2(1270)^0$	$1.6 \pm 3.6 \pm 0.7$	$-7.3 \pm 3.3 \pm 0.8$	$1.5 \pm 7.2 \pm 1.3$
$D^0 \to a_1(1260)^+ \pi^-$	$-4.4 \pm 5.6 \pm 3.7$	$9.3 \pm 6.1 \pm 1.3$	$-10.6 \pm 11.7 \pm 7.0$
$D^0 \to a_1(1260)^- \pi^+$	$-3.4 \pm 7.0 \pm 1.9$	$-5.8 \pm 5.6 \pm 4.3$	$-8.7 \pm 13.7 \pm 2.9$
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=1}$	$2.1 \pm 5.2 \pm 0.8$	$-12.2 \pm 5.5 \pm 0.6$	$2.4 \pm 11.0 \pm 1.4$
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=2}$	$5.2 \pm 7.1 \pm 1.9$	$-5.6 \pm 8.1 \pm 1.3$	$8.5 \pm 14.3 \pm 3.5$
$D^0 \to [K^+K^-]_{L=0}(\rho - \omega)^0$	$11.7 \pm 6.0 \pm 1.9$	$4.8 \pm 6.2 \pm 1.1$	$21.3 \pm 12.5 \pm 2.8$
$D^0 \to [\phi(1020)f_2(1270)^0]_{L=1}$	$2.7 \pm 6.7 \pm 1.7$	$0.9 \pm 6.0 \pm 1.7$	$3.6 \pm 13.3 \pm 3.0$
$D^0 \rightarrow [K^*(892)^0 \overline{K}_2^*(1430)^0]_{L=2}$	$3.9 \pm 5.2 \pm 1.0$	$6.8 \pm 6.4 \pm 1.4$	$6.1 \pm 10.8 \pm 1.8$

Table 5. *CP*-violation parameters fitted simultaneously to the D^0 and (*CP*-transformed) \overline{D}^0 samples. The first uncertainty is statistical and the second is systematic.