

Higgs boson pair production in $WW^*\gamma\gamma$ using 13 TeV 36.1fb⁻¹ data with the ATLAS detector

Eur. Phys. J. C (2018) 78: 1007

<u>Kaili Zhang</u> Institute of High Energy Physics, Beijing 23-27 Oct, 2019 The 5th CLHCP workshop @ DLUT

HH Introduction

- Searches for new physics are important topics in LHC.
- Higgs pair production could be the sensitive benchmark for new physics.

Why $WW^*\gamma\gamma$

 $Br(HH \rightarrow WW^*\gamma\gamma) \approx 10^{-4}$. Limited yields while

- Clean signature diphoton: smooth spectrum provides good background estimation and mass resolution (~1.6GeV).
- Large fraction WW; Higgs boson coupling could be sensitive for BSM.
- Good background rejection from semi-leptonic decay.

Final state: $\gamma \gamma + l \nu + j j$ selected

- τ from W would be too soft to catch. So for lepton only e/μ .
- Considering large dijet background,
 - Only considering low mass resonance <500GeV
- Considering κ_{λ} and spin-2 sensitivity
 - which needs high statistics. They are studied in the b-related channels.

Phenomenal study on WWyy potential: <u>Phys.Lett. B755 (2016) 509–522</u>

$pp \rightarrow \ell \nu \ell \nu \gamma \gamma$	Sum	Selection+Basic Cuts	$M_{\gamma\gamma}, E_T$	Final Cuts
Signal (fb)	0.315	0.0165	0.0147	0.0107
BG[lvlvyy+llyy](fb)	153.3	0.937	0.00394	0.000169
BG[tīh] (fb)	0.0071	0.000493	0.000452	0.000051
BG[Zh] (fb)	0.175	0.0331	0.00247	0.000065
BG[hh] (fb)	0.00222	0.000132	0.000116	0.000074
BG[Total] (fb)	153.48	0.971	0.00698	0.000359
Significance(Z ₀)	0.440	0.289	2.44	4.05
$pp \rightarrow q\bar{q}' \ell \nu \gamma \gamma$	σ_{total}	Selection+Basic Cuts	$M_{\gamma\gamma}, M_{qq}, E_T$	Final Cuts
Signal (fb)	1.32	0.0891	0.0671	0.0533
BG[qqlvyy] (fb)	31.59	0.581	0.0291	0.00672
$BG[lv\gamma\gamma]$ (fb)	143.3	0.0642	0.00454	0.000891
BG[Wh] (fb)	0.42	0.00509	0.00335	0.00139
BG[WWh] (fb)	0.0023	0.000210	0.000127	0.000057
$BG[t\bar{t}h](fb)$	0.0148	0.00163	0.00111	0.000441
BG[hh] (fb)	0.00462	0.000291	0.000197	0.000155
BG[th] (fb)	0.0129	0.000479	0.000247	0.000104
BG[Total] (fb)	175.35	0.653	0.0386	0.0098
Significance(Z ₀)	1.72	1.87	4.86	6.22

Data Sample

- In this report,
 - Data: 36.1 fb⁻¹ data collected in 2015 + 2016 used;
 - Signal: Resonant use 4 mass point: m260, m300, m400, m500;

Processes	Generator	Parton shower	Tune	PDF
Non-resonant	MADGRAPH5_AMC@NLO 2.2.3	Herwig++	UEEE5	CTEQ6L1
Resonant	MadGraph5_aMC@NLO 2.2.3	Herwig++	UEEE5	CTEQ6L1

- Background:
 - Major background could be $\gamma\gamma$ +jets(Sherpa), then Single Higgs background;
 - Also the continuum $l\nu jj\gamma\gamma$ sample used to test the shape.

Processes	Generators	QCD order	EW order	PDF	Parton shower	Normalisation
ggF	POWHEG NNLOPS	NNLO	NLO	PDF4LHC15	Рутніа 8.186	$N^{3}LO (QCD) + NLO (EW)$
VBF	Powheg	NLO	NLO	PDF4LHC15	Рутніа 8.186	NNLO (QCD) + NLO (EW)
W^+H	Powheg MiNLO	NLO	NLO	PDF4LHC15	Рутніа 8.186	NNLO (QCD) + NLO (EW)
W^-H	Powheg MINLO	NLO	NLO	PDF4LHC15	Рутніа 8.186	NNLO (QCD) + NLO (EW)
$q\bar{q} \rightarrow ZH$	Powheg MINLO	NLO	NLO	PDF4LHC15	Рутніа 8.186	NNLO (QCD) + NLO (EW)
ggZH	Powheg MINLO	NLO	NLO	PDF4LHC15	Рутніа 8.186	NLO NLL (QCD)
tīH	MadGraph aMC@NLO	NLO	NLO	NNPDF3.0	Рутніа 8.186	NLO (QCD) + NLO (EW)

Event selection

- Event requirement
 - Diphoton Trigger, data quality, Good Run List, Primary vertex;
- Photon: 2 PID Tight, isolated photons;

•
$$E_T > 25 GeV, |\eta| \in [0, 1.37] \cup [1.52, 2.47];$$
 $\frac{E_T^{y_1}}{m_{yy}} > 0.35, \frac{E_T^{y_2}}{m_{yy}} > 0.25;$ $m_{yy} \in [105, 160] \text{GeV}.$

- Lepton: At least $1 e/\mu$, PID:Medium
 - $E_T > 10 GeV, |\eta_e| \in [0, 1.37] \cup [1.52, 2.47]; |\eta_{\mu}| < 2.47$
- Jet: At least 2. Anti-kt algorithm, R=0.4
 - B veto: WP70, keep orthogonal with other HH.
 - $p_T > 25 GeV$, $|\eta| < 2.5$; JVT<0.59.

Signal Optimization

MET related variables seem no separation power so we drop it.

 $p_T^{\gamma\gamma}$ would help for the higher mass points(m400, m500 and non-resonance), since SM higgs is more boosted.

	No $p_{\rm T}^{\gamma\gamma}$ selection				100 GeV	
m_X [GeV]	260	300	400	400	500	Non-resonant
Acceptance \times efficiency [%]	6.1	7.1	9.7	7.8	10	8.5

Final efficiencies turned to ~6-10% for resonance and 8.5% for non-resonance.

Signal shape modeled by Double-Sided Crystal Ball.

Background estimation

• Background shape: Fitted by 2nd-order exponential polynomial with Minimal χ^2 .

•

• Uncertainty for background modelling is estimated by Spurious Signal.

Fitting a S+B model to a B-only sample.

Background estimation in signal region

- Background yields determined from the fit to data.
 - Extending the continuum background shape over the signal mass range.
- Error here includes both stats and systematic.

Process	f events	
	No $p_{\rm T}^{\gamma\gamma}$ selection	$p_{\rm T}^{\gamma\gamma} > 100 { m ~GeV}$
Continuum background SM single-Higgs SM di-Higgs	22 ± 5 1.92 ± 0.15 0.046 ± 0.004	5.1 ± 2.3 1.0 ± 0.09 0.038 ± 0.004
Sum of expected background	24 ± 5	6.1 ± 2.5
Data	33	7

Systematic uncertainty

	ΔΤ	ΙΔς
h	EXPE	RIMENT

Source of uncertainties		Non-resonant HH	$X {\rightarrow} HH$	Single-H bkg $p_{\rm T}^{\gamma\gamma} > 100 {\rm ~GeV}$	Single- H bkg No $p_{\rm T}^{\gamma\gamma}$ selection
Luminosit	y 2015+2016	2.1	2.1	2.1	2.1
Trigger		0.4	0.4	0.4	0.4
Event sam	ple size	1.7	2.2	1.6	1.3
Pile-up re	weighting	0.5	0.9	0.7	0.6
	identification	1.7	1.4	0.8	0.8
Dhatan	isolation	0.8	0.7	0.4	0.4
Photon	energy resolution	0.1	0.1	0.2	< 0.1
	energy scale	0.2	< 0.1	0.2	< 0.1
T /	energy scale	4.0	9.9	2.4	2.6
Jet	energy resolution	0.1	1.6	0.5	1.0
	b-hadron jets	< 0.1	< 0.1	3.8	3.6
	c-hadron jets	1.5	1.0	0.7	0.6
<i>b</i> -tagging	light-flavour jets	0.3	0.3	0.1	0.1
	extrapolation	< 0.1	< 0.1	0.1	< 0.1
T (electron	0.5	0.7	0.2	0.2
Lepton	muon	0.5	0.7	0.3	0.5
	PDF on σ	2.1	-	3.4	3.4
	α_S on σ	2.3	-	1.3	1.3
	scale on σ	6.0	-	0.9	0.9
Theory	HEFT on σ	5.0	-	-	-
-	scale on $\epsilon \times A$	2.8	2.5	-	-
	PDF on $\epsilon \times A$	3.0	2.4	-	-
	parton shower on $\epsilon \times A$	7.8	29.6	-	-
	$B(H \rightarrow \gamma \gamma)$	2.1	2.1	2.1	2.1
	$B(H \rightarrow WW^*)$	1.5	1.5	1.5	1.5
Total		13.6	31.8	7.1	6.8

Spurious signal uncertainty

- To scan the largest value of the fitted signal yields as n_{ss}.
- In [120, 130], step 0.5GeV

mX260	mX300	mX400	mX500	Non-res
-0.44	-0.46	-0.26	-0.26	-0.26

Dominant systematics for non-resonant are:

- Spurious signal
- e/γ energy scale and resolution.

The large parton shower uncertainty 29.6% occurs at m=260GeV, where the jet spectrum at low-pT is more susceptible to variations.

Results

- No significant excess observed.
- Expected upper limit on $pp \rightarrow HH$ is 7.7pb for non-

resonant; 230(160) times of SM prediction.

- 17.6pb(m260) to 4.4pb(m500) for resonant.
- Statistical uncertainty dominates.

	$+2\sigma$	$+1\sigma$	Median	-1σ	-2σ	Observed
Upper limits on $\sigma(HH)$ [pb]	12	8.0	5.4	3.9	2.9	7.7
Upper limits on $\sigma(HH) \times B(\gamma \gamma WW^*)$ [fb]	12	7.8	5.3	3.8	2.8	7.5
Ratios of limits over the SM $\sigma(HH)$	360	240	160	120	87	230

Results published on Eur. Phys. J. C (2018) 78: 1007 arXiv: 1807.08567.

Kaili@CLHCP

Dihiggs Combination

• $WW^*\gamma\gamma$ becomes one part of HH combination in 36.1ifb.

CMS results

- CMS dihiggs contains bbyy, bbττ, bbbb, and bbVV.
 - -> VVVV and VVyy not included.
- Phys. Rev. Lett. 122, 121803 (2019), arXiv:1811.09689
- ~22 times of SM while ATLAS 7 times. CMS shows worse performance on b-

Undergoing

• Now(2019, October), $WW^*\gamma\gamma$ is one part of

dihiggs multi-lepton analyses.

- Full run2 data allows inclusive study for all possible multilepton channels.
- For $\gamma\gamma + ML$ events, still $WW^*\gamma\gamma$ is dominant.
- Analysis with full run2 data undergoing, not shown

here. Aiming for one note next year.

• $S(\rightarrow WW/ZZ)H(\rightarrow \gamma\gamma)$ Model also in plan.

• Eur. Phys. J. C (2018) 78: 1007, ATLAS non-resonant and resonant Higgs boson

pair production with a semi-leptonic $WW^*\gamma\gamma$ final state using 36.1 ifb presented.

- No significant excesses found.
- 95% CL upper limit of 7.7pb is set on the cross section for non-resonant production.
- Lastest ATLAS dihiggs combination results <u>1906.02025</u> are also shown.
 - for the 95% CL upper limit, 7 times of the SM prediction value can be obtained.
- The multi-lepton analyses with full Run2 data are ongoing.

Backups

Stability check for background model

For different purity and lepton number, on second-order exponential polynomial.

