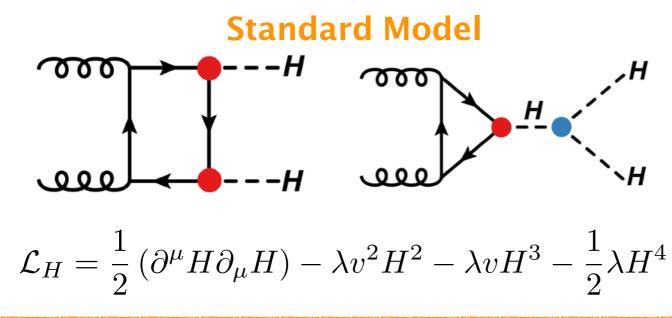
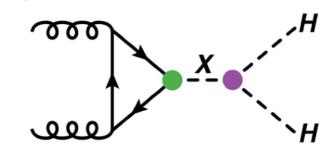
Search for HH in the yybb final state with the ATLAS detector

JHEP 11 (2018) 040

<u>Adele D'Onofrio</u> CLHCP, Dalian 26th October 2019

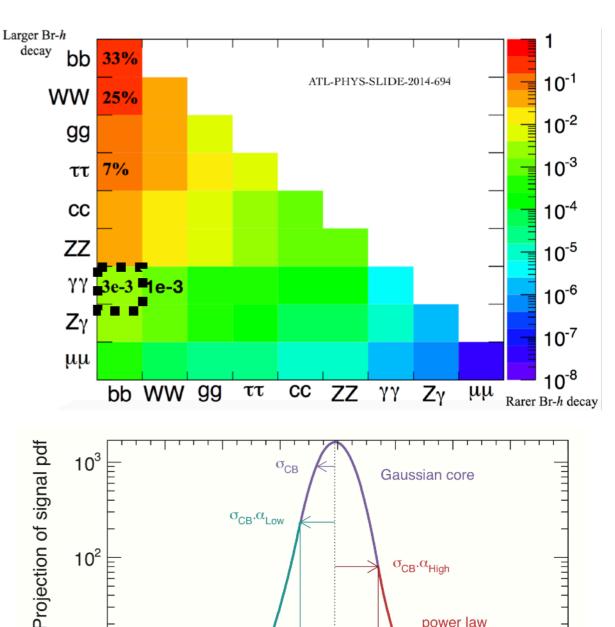


中國科學院為能物招補完備 Institute of High Energy Physics Chinese Academy of Sciences



Introduction

- Higgs boson pair production is predicted in the SM and allows the possibility of measuring the Higgs boson self-coupling
- + Destructive interference between diagrams results in a small cross section: σ = 33.41 fb at \sqrt{s} = 13 TeV: 1000 times smaller than the Higgs cross section
 - Not yet sensitive with the current LHC dataset
- + However, enhancements to non-resonant HH production can occur through an enhanced self-coupling (κ _λ = λ HHH / λ SM) or potentially BSM couplings (eg ttHH vertex)
- Various models predict a new particle that can decay to pairs of Higgs bosons, referred to as resonant HH production
- In the bbyy final state, a search is performed for both resonant and non-resonant HH production



Beyond Standard Model

Motivations for bbyy

- ♦ HH → bbyy is one of the most attractive ways to study HH production
 - + High H→bb branching ratio (~57%)
 - Photon ID can effectively reject multi-jet backgrounds
 - Efficient di-photon trigger gives high signal efficiency
 - ◆ Excellent photon energy resolution gives a narrow H → γγ mass peak (σCB typically 1.6 GeV in ATLAS)

145

140

Δm_H

power law ∼m⁻ⁿHigh

135

10 E

105

110

power law ~(-m)⁻ⁿLow

120

115

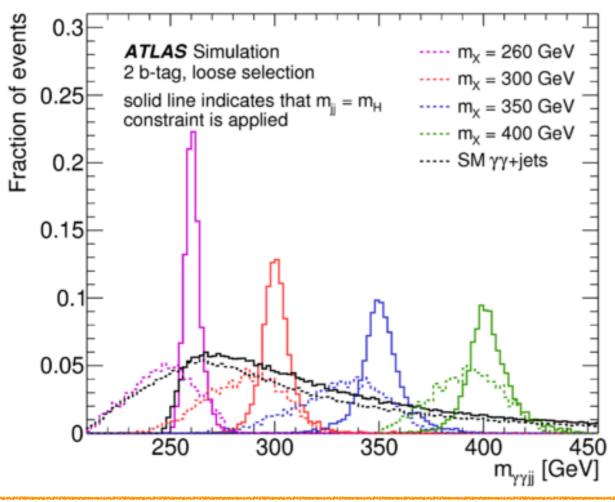
125

130

Data and MC samples

- → The HH → bbyy analysis uses 36.1 fb⁻¹ of data collected by ATLAS in 2015 + 2016
- Signal MC samples:
 - + Approximate NLO SM ($\kappa \lambda$ = 1) HH using MadGraph + Herwig
 - + LO varied κ_{λ} HH using MadGraph + Pythias used to re-weight NLO sample for κ_{λ} interpretation
 - NLO BSM resonant HH using Madgraph + Herwig
- Background MC samples:
 - + Single Higgs background: most important are ggF, ttH and ZH but all are considered
 - yy + jets: used in the background decomposition and to guide the choice of functional form

Process	Generator	Showering	PDF set	$\sigma~[{\rm fb}]$	Order of calculation of σ
Non-resonant SM HH	MadGraph5_aMC@NLO	Herwig++	CT10 NLO	33.41	NNLO+NNLL
Non-resonant BSM HH	MadGraph5_aMC@NLO	Pythia 8	NNPDF 2.3 LO	-	LO
Resonant BSM ${\cal H}{\cal H}$	MadGraph5_aMC@NLO	$\operatorname{Herwig}++$	CT10 NLO	-	NLO
$\gamma\gamma$ plus jets	Sherpa	Sherpa	CT10 NLO	-	LO
ggH	Powheg-Box NNLOPS (r3080) [60]	Pythia 8	PDF4LHC15	48520	$N^{3}LO(QCD)+NLO(EW)$
VBF	Powheg-Box $(r3052)$ [61]	Pythia	PDF4LHC15	3780	NNLO(QCD)+NLO(EW)
WH	Powheg-Box $(r3133)$ [62]	Pythia	PDF4LHC15	1370	NNLO(QCD) + NLO(EW)
$q\bar{q} \rightarrow ZH$	Powheg-Box $(r3133)$ [62]	Pythia 8	PDF4LHC15	760	NNLO(QCD)+NLO(EW
$t\bar{t}H$	MadGraph5_aMC@NLO	Pythia 8	NNPDF3.0	510	NLO(QCD) + NLO(EW)
$gg \rightarrow ZH$	Powheg-Box $(r3133)$	Pythia 8	PDF4LHC15	120	NLO+NLL(QCD)
$bar{b}H$	MadGraph5_aMC@NLO	Pythia	CT10 NLO	490	NNLO(5FS)+NLO(4FS)
t-channel tH	MadGraph5_aMC@NLO	Pythia 8	CT10 NLO	70	LO(4FS)
W-associated tH	MadGraph5_aMC@NLO	$\operatorname{Herwig}++$	CT10 NLO	20	NLO(5FS)


Event Selection

H→γγ event selection:

- Two tight ID and isolated photons with P_T / m_{γγ} > 0.35 (0.25) for the leading (subleading) photon
- Events are then sorted into categories with exactly 2 b-tags or 1 b-tag

Jet b-Tagging WPs:

MV2@60% in 1tag and 70% in 2tag region

Two different selections are used:

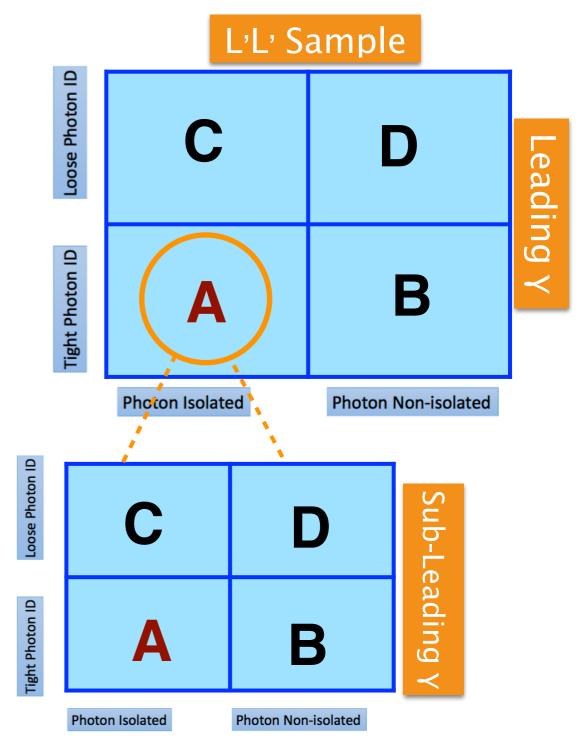
Loose selection:

- + Used for resonant masses between 260 and 500 GeV and the κ_λ interpretation
- jet P_T > 40 (25) GeV
 m_{bb} in the interval [80,140] GeV
- <u>Resonant analysis only</u>: |m_{γγ} m_H| < 4.7 GeV</p>

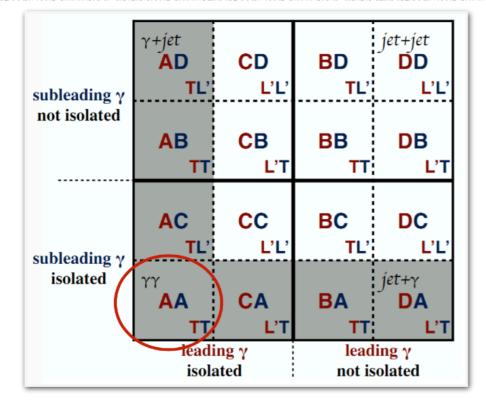
Tight selection:

- used for resonant masses between 500 GeV and 1 TeV and the limit on the SM cross-section
- jet P_T > 100 (30) GeV
 m_{bb} in the interval [90,140] GeV
- <u>Resonant analysis only</u>:
 |m_{yy} m_H| < 4.3 GeV

Resonant analysis only:


- The di-jet Higgs candidate 4-vector is rescaled such that its invariant mass is equal to 125 GeV
- Improves the m_{yybb} resolution, particularly at low m_X

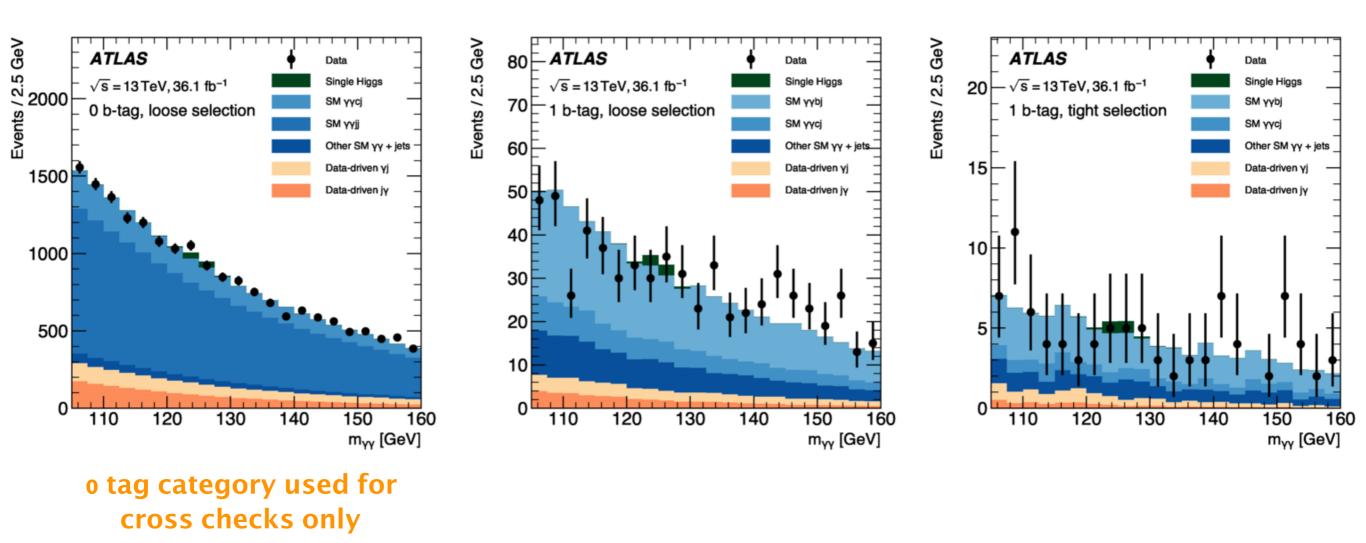
Background Decomposition


Studied using a 2x2D sideband method where photon identification and isolation requirements are loosened

Dominant SM background processes:
 Υγ (irreducible), γ-jet, and jet-jet (reducible)
 Data-driven background decomposition:

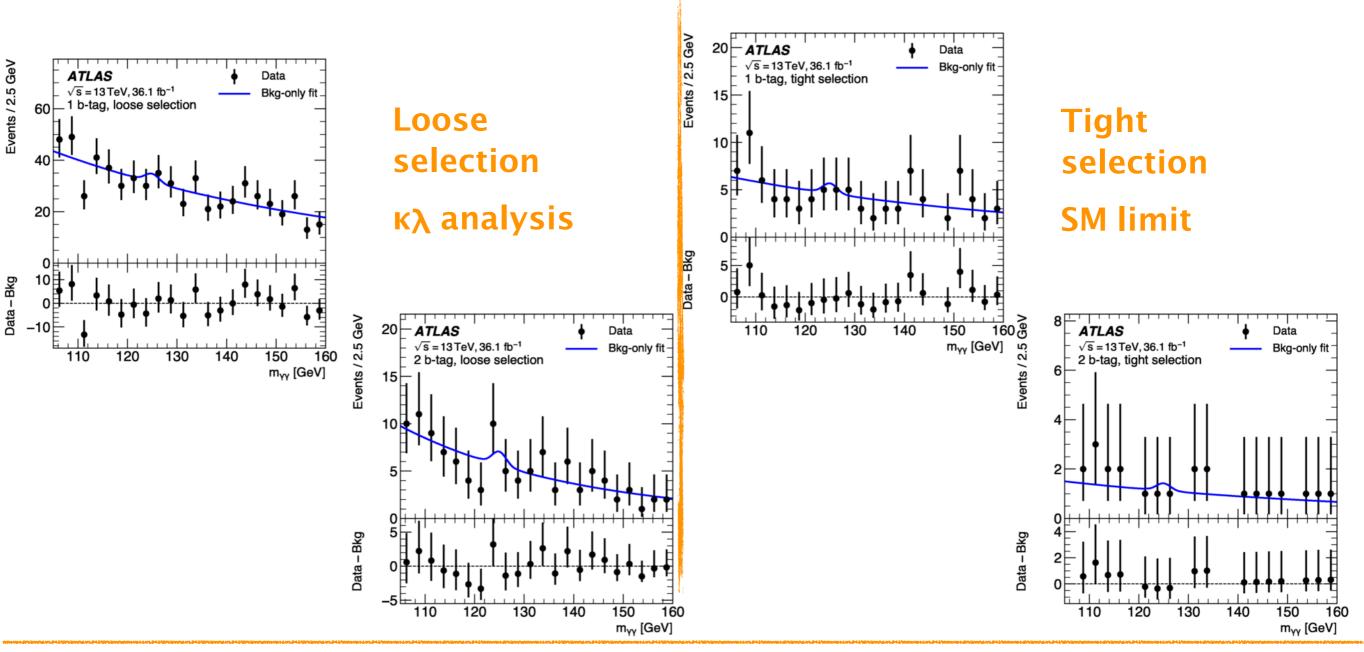
- regions (15 background control region and 1 signal region)
- each region categorised based on photon ID and isolation
- required inputs from simulation: photon efficiencies
- solve the 16 equations to extrapolate rates of the different background event processes from the background control regions into the signal region

Background Decomposition (2)


- + What we have in the real data?
 - Event yields in the 16 regions
- + What we need?
 - Event yields of the 4 components in the signal (AA) region

$$N_{AA}^{all} = N_{AA}^{\gamma\gamma} + N_{AA}^{\gamma J} + N_{AA}^{J\gamma} + N_{AA}^{JJ}$$

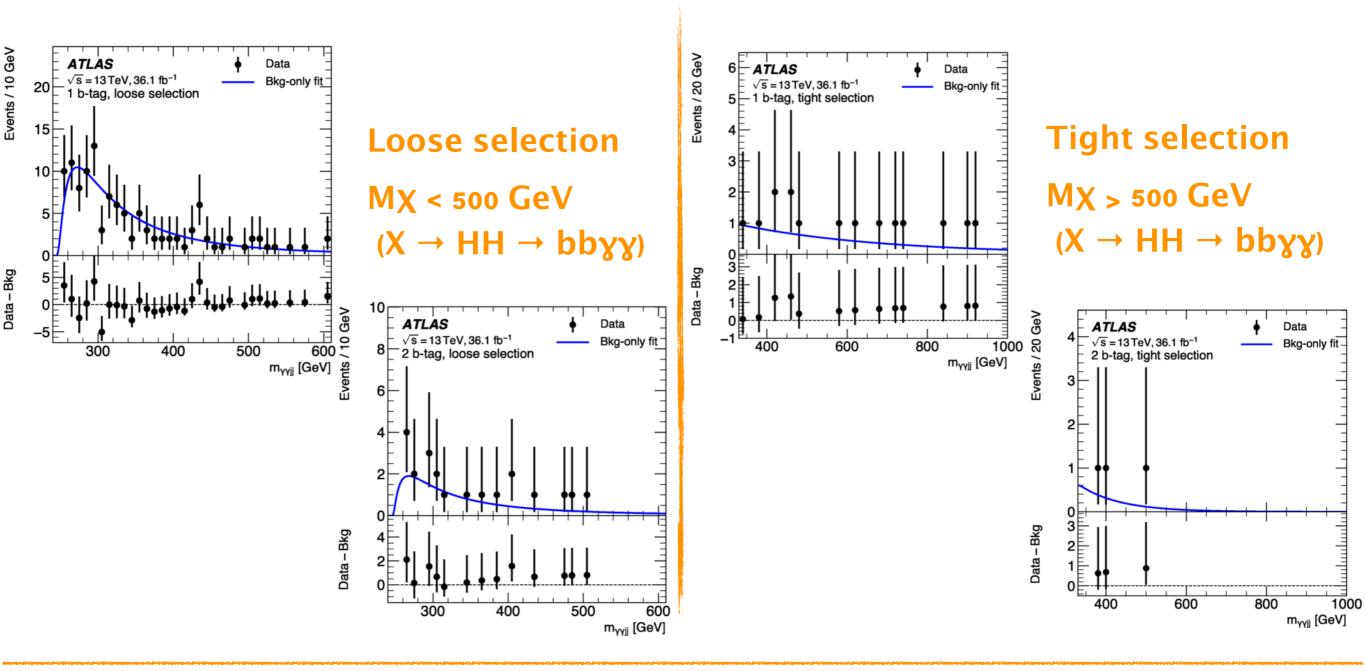
	Typical Result	Uncertainty
γγ Purity	84%	5%
γj-jγ Fraction	15%	2%
j-j Fraction	1%	0.1%


Background Decomposition (3)

- + Flavour information extracted from the truth information in the Monte Carlo sample
- In the 2-tag category which dominates the sensitivity, the background is mostly made up of the irreducible yybb

Signal Extraction (non resonant)

 For the non-resonant analysis, the signal is extracted by performing a fit to the diphoton mass, m_{yy} using a double-sided Crystal ball to model the signal and the single Higgs background and an exponential to model the continuum background



9

Adele D'Onofrio

Signal Extraction (resonant)

For the resonant analysis, the signal is extracted by performing a fit to the fourbody mass, m_{yyjj} using a Gaussian with exponential tails as signal model and a Novosibirsk (exponential) for the loose (tight) selection

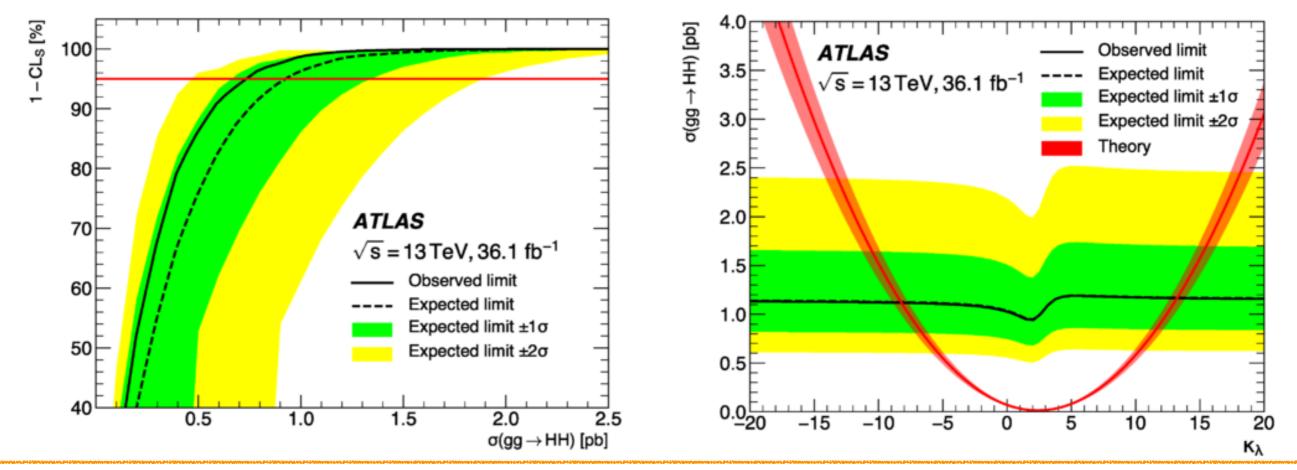
Systematic Uncertainties

Analysis is almost entirely statistically limited

- The largest systematic uncertainties are:
 - conservative 100% theory uncertainty on ggF + Heavy Flavour production
 - Photon ID, JES/JER and flavour tagging

Source of systematic uncertainty		% effect relative to nominal Non-resonant analysis				in the 2-tag (1-tag) category Resonant analysis: BSM HH			
		SM HH signal Single-H bkg		Loose selection		Tight selection			
Luminosity Trigger Pile-up modelling		$\pm 2.1 \\ \pm 0.4 \\ \pm 3.2$	(± 2.1) (± 0.4) (± 1.3)	$\pm 2.1 \\ \pm 0.4 \\ \pm 2.0$	(± 2.1) (± 0.4) (± 0.8)	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 4.2)	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 3.8)
Photon	identification isolation energy resolution energy scale	$\pm 2.5 \\ \pm 0.8$	(± 2.4) (± 0.8)	$\pm 1.7 \\ \pm 0.8$	(± 1.8) (± 0.8) -	$\pm 2.6 \\ \pm 0.8 \\ \pm 1.0 \\ \pm 0.9$	(± 2.6) (± 0.8) (± 1.3) (± 3.0)	$\pm 2.5 \\ \pm 0.9 \\ \pm 1.8 \\ \pm 0.9$	$\begin{array}{c} (\pm 2.5) \\ (\pm 0.9) \\ (\pm 1.2) \\ (\pm 2.4) \end{array}$
Jet	energy resolution energy scale	$\pm 1.5 \\ \pm 2.9$	(± 2.2) (± 2.7)	$\pm 2.9 \\ \pm 7.8$	$(\pm \ 6.4)$ $(\pm \ 5.6)$	$\pm 7.5 \\ \pm 3.0$	(± 8.5) (± 3.3)	$\pm 6.4 \\ \pm 2.3$	(± 6.4) (± 3.4)
Flavour tagging	b-jets c-jets light-jets	$ \pm 2.4 \pm 0.1 < 0.1 $	(± 2.5) (± 1.0) (± 5.0)	$\pm 2.3 \\ \pm 1.8 \\ \pm 1.6$	(± 1.4) (± 11.6) (± 2.2)	± 3.4	(±2.6) - -	± 2.5	(±2.6)
Theory	$PDF+\alpha_{S}$ Scale EFT	$\pm 2.3 \\ +4.3 \\ -6.0 \\ \pm 5.0$	(± 2.3) (+4.3) (-6.0) (± 5.0)	$\pm 3.1 \\ +4.9 \\ +7.0$	(± 3.3) (+ 5.3) (+ 8.0) n/a	1	n/a n/a n/a n/a	1	n/a n/a n/a n/a

Results (non resonant)

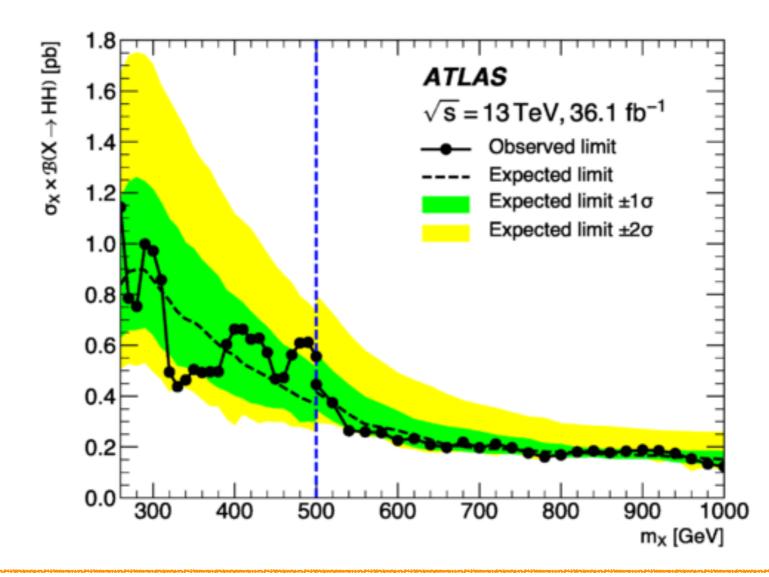

Single Higgs backgrounds are fixed to their SM expectation in the fit

Limits on the SM HH cross-section at 95% CL:

	Observed	Expected	-1σ	$+1\sigma$
$\sigma_{gg \to HH} \ [pb]$	0.73	0.93	0.66	1.4
As a multiple of $\sigma_{\rm SM}$	22	28	20	40

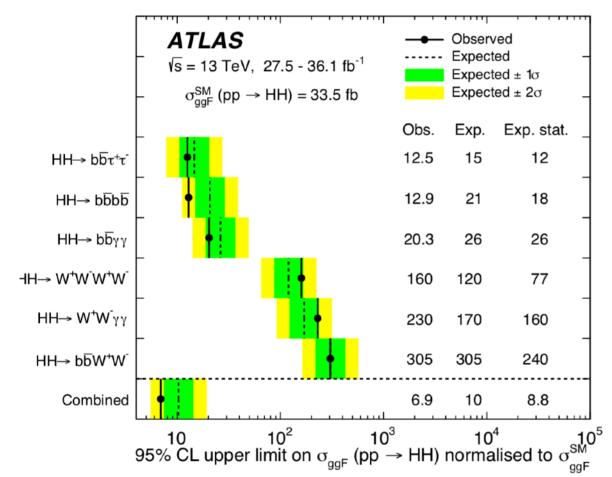
• Selection efficiency parameterised as a function of κ_{λ} for the interpretation

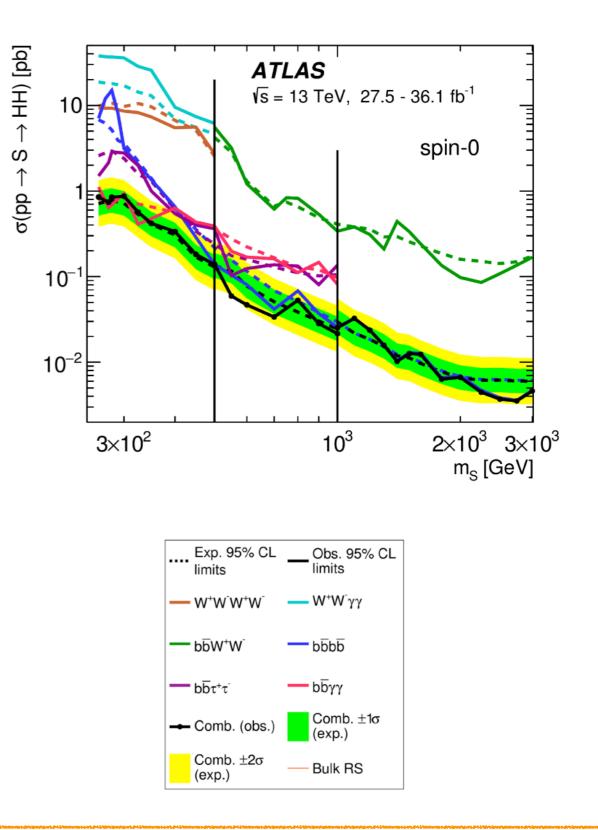
+ κ_{λ} is observed (expected) to be constrained at 95% CL to -8.2 < κ_{λ} < 13.2 (-8.3 < κ_{λ} < 13.2)


Adele D'Onofrio

Results (resonant)

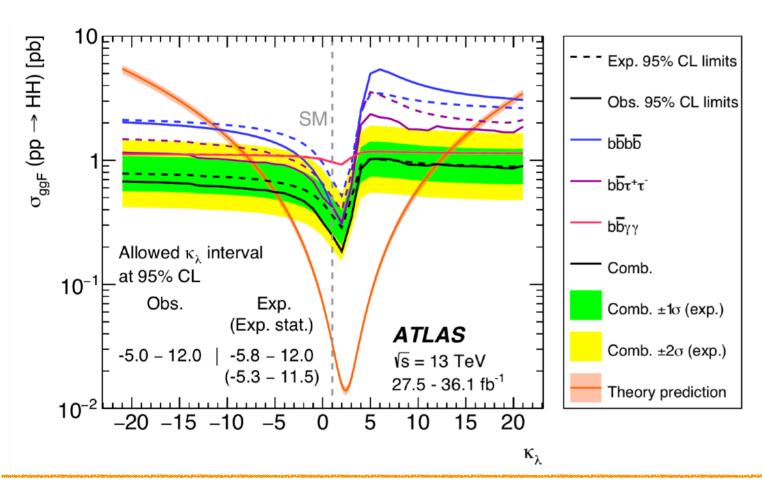
 Largest deviation from the background only hypothesis is 480 GeV (local significance of 1.2 σ)

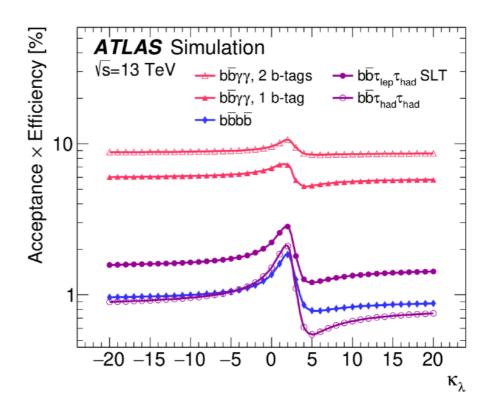

No significant excesses observed


+ Observed limits vary from 1.1 pb at $M_X = 260$ GeV to 0.12 pb at $M_X = 1$ TeV

HH Combination: arXiv:1906.02025

- ATLAS HH Combination sets an upper limit on the SM HH cross section of 6.9 * SM (10.0 * SM expected) and constrains the Higgs boson selfcoupling to -5.0 < κλ < 12.0
- HH → bbyy is the 3rd most sensitive channel to SM HH production and the most sensitive channel for large BSM κλ modifications
- + HH → bbγγ: best sensitivity to resonant masses less than 350 GeV





Adele D[,]Onofrio

HH Combination: arXiv:1906.02025

- ATLAS HH Combination sets an upper limit on the SM HH cross section of 6.9 * SM (10.0 * SM expected) and constrains the Higgs boson selfcoupling to -5.0 < κλ < 12.0
- HH → bbyy is the 3rd most sensitive channel to SM HH production and the most sensitive channel for large BSM κλ modifications
- + HH → bbγγ: best sensitivity to resonant masses less than 350 GeV

	Allowed κ_{λ} interval at 95% CL					
Final state	Obs.	Exp.	Exp. stat.			
$bar{b}bar{b}$	-10.9 - 20.1	-11.6 - 18.8	-9.8 - 16.3			
$bar{b} au^+ au^-$	-7.4 — 15.7	-8.9 - 16.8	-7.8 - 15.5			
$bar{b}\gamma\gamma$	-8.1 - 13.1	-8.1 - 13.1	-7.9 - 12.9			
Combination	-5.0 - 12.0	5.8 12.0	-5.3 - 11.5			

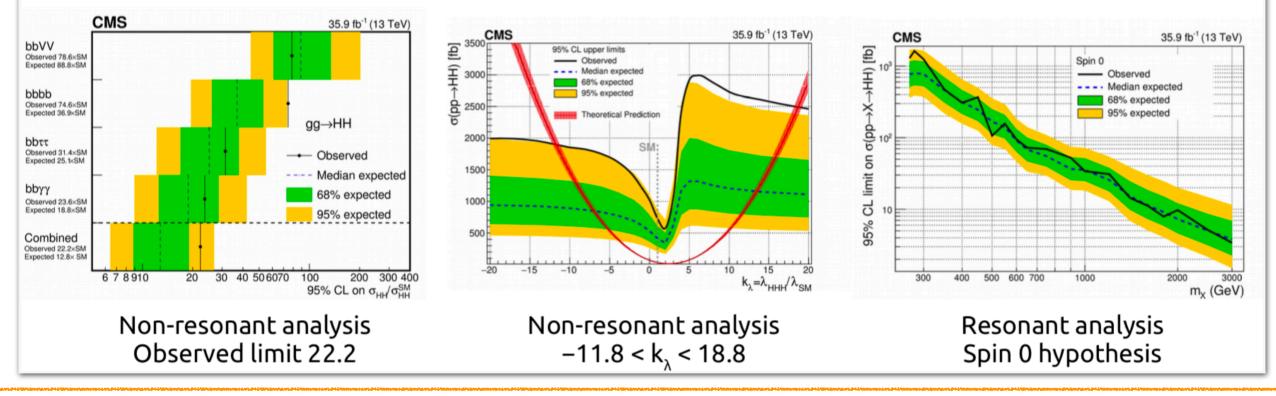
Conclusions

- ATLAS has performed a search for HH in the bbyy final state
- No significant excesses observed in either the non-resonant or resonant search
- Limits set in the non-resonant search:
 - + σ_{HH} = 22*σ_{SM}
 - + Higgs boson self-coupling constrained to be in the interval -8.2 < κ_{λ} < 13.2
- + Limits in the resonant search range between 1.1 pb to 0.12 pb for 260 < M_X < 1000 GeV
- Looking forward, ATLAS has now collected ~ 140 fb⁻¹ of data
 - → HH → bbyy is statistically limited so can expect large sensitivity increase with the full Run 2 data set

Thank you!

Back-up Slides

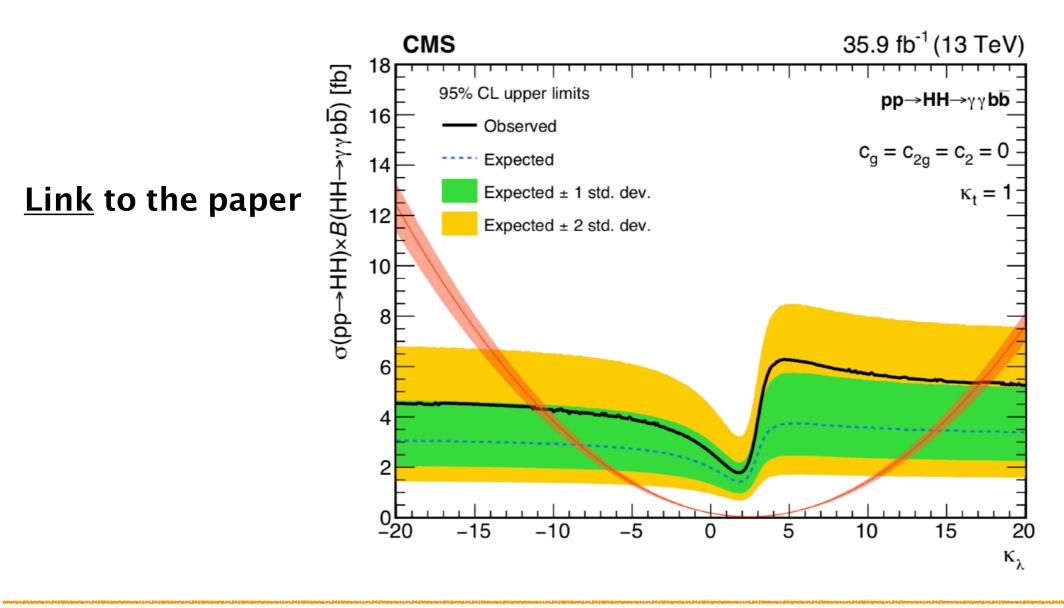
Event Selection (2) and Yields


	Non-resonant			Resonant				
	1-0	lag	2-4	lag	1-1	ag	2-0	ag
	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Tight
$m_{\gamma\gamma}$ range [GeV]	105-160	105-160	105 - 160	105 - 160	120.39-129.79	120.79-129.39	120.39-129.79	120.79 - 129.39
Jet b-tagging WPs used	60% + BDT	60% + BDT	70%	70%	60% + BDT	60% + BDT	70%	70%
Leading jet p_T [GeV]	>40	>100	>40	>100	>40	>100	>40	>100
Subleading jet p_T [GeV]	>25	>105	>25	>30	>25	>30	>25	>30
m_{jj} range [GeV]	80 - 140	90-140	80 - 140	90 - 140	80 - 140	90-140	80-140	90-140

	1-0	ag	2-tag		
	Loose selection	Tight selection	Loose selection	Tight selection	
Continuum background SM single-Higgs-boson background	$\begin{array}{rrr} 117.5 & \pm 4.7 \\ & 5.51 \ \pm 0.10 \end{array}$	$\begin{array}{rrr} 15.7 & \pm \; 1.6 \\ 2.20 \; \pm \; 0.05 \end{array}$	$\begin{array}{rrrr} 21.0 & \pm \ 2.0 \\ 1.63 & \pm \ 0.04 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Total background	123.0 ± 4.7	$17.9 \pm 1.6 $	22.6 ± 2.0	4.30 ± 0.79	
SM Higgs boson pair signal	$0.219 {\pm} 0.006$	$0.120 {\pm}~0.004$	$0.305 \pm \ 0.007$	$0.175 {\pm}\ 0.005$	
Data	125	19	21	3	

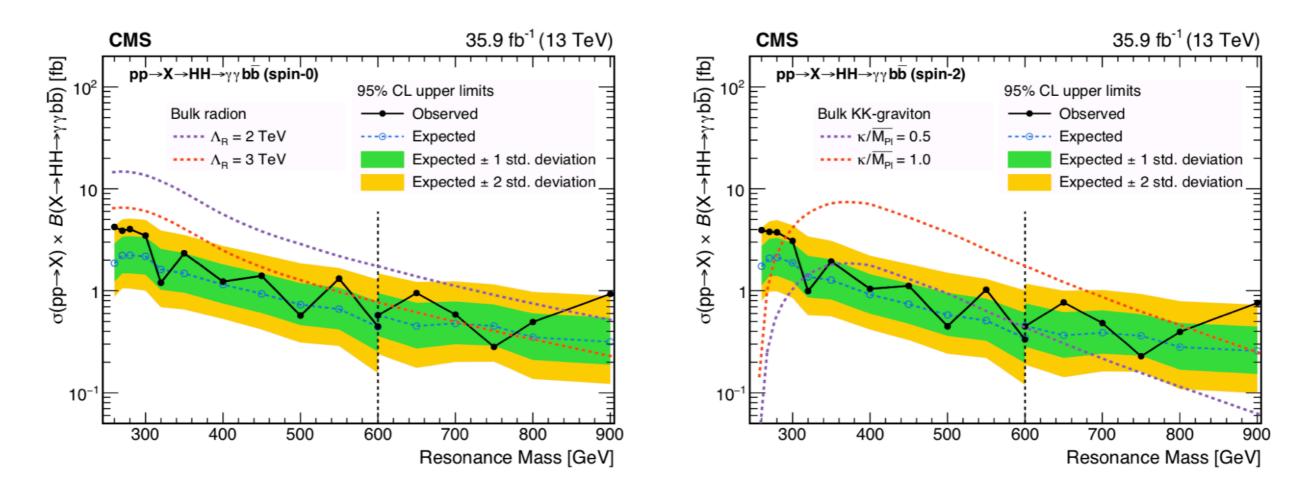
HH searches in CMS

Link to the paper


- CMS result on HH search includes the bbγγ, bbττ, bbbb, and bbVV channels, where V represents a W or Z boson
- For the non-resonant production mechanism, the observed (expected) 95% C.L. corresponds to 22.2 (12.8) times the theoretical prediction for the standard model cross section
 - Expected limits similar between ATLAS and CMS: 10 vs 12.8 times SM prediction respectively
- Values of k_{λ} in the range –11.8 < k_{λ} < 18.8 are still allowed (95% C.L.) by the observed data
- For the resonant production mechanism, upper exclusion limits at 95% C.L. are obtained for the production of a narrow resonance with mass ranging from 250 to 3000 GeV (for either spin-0 and spin-2 resonances)

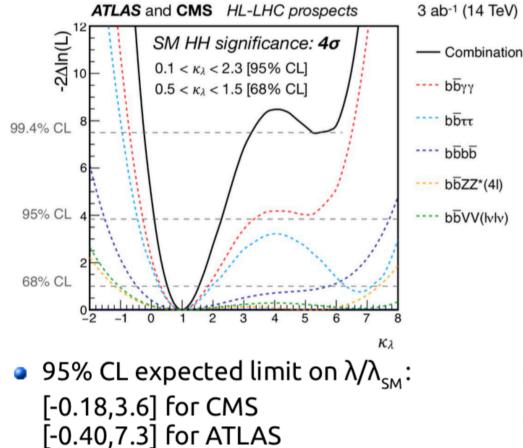
HHyybb searches in CMS

Non Resonant Searches


The observed (expected) 95% CL upper limits on the SM-like pp \rightarrow HH $\rightarrow \gamma\gamma b\bar{b}$ process are 2.0 (1.6 fb); 0.79 (0.63 pb) for the total ggHH production cross section assuming SM Higgs boson branching fractions. The results can also be interpreted in terms of observed (expected) upper limits on $\mu_{\rm HH}$ of 24 (19). This is the most stringent constraint to date from the LHC. In particular, the constraint on $\mu_{\rm HH}$ improves over the previous search by a factor of three [23].

HHyybb searches in CMS

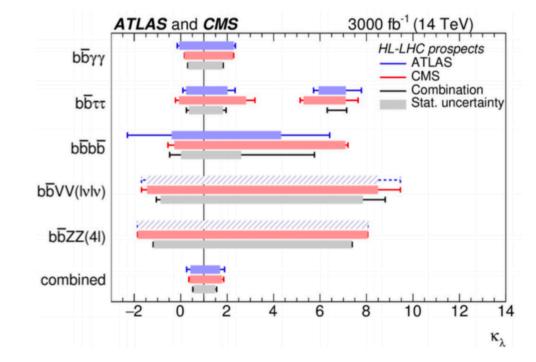
Resonant Searches


The observed and median expected upper limits at 95% confidence level (CL) are shown in Fig. 9, for the pp $\rightarrow X \rightarrow HH \rightarrow \gamma\gamma b\bar{b}$ process assuming spin-0 and a spin-2 resonances. The data exclude a cross section of 0.23 to 4.2 fb depending on m_X and the spin hypothesis.

Link to the paper

HH Prospects at HL-LHC

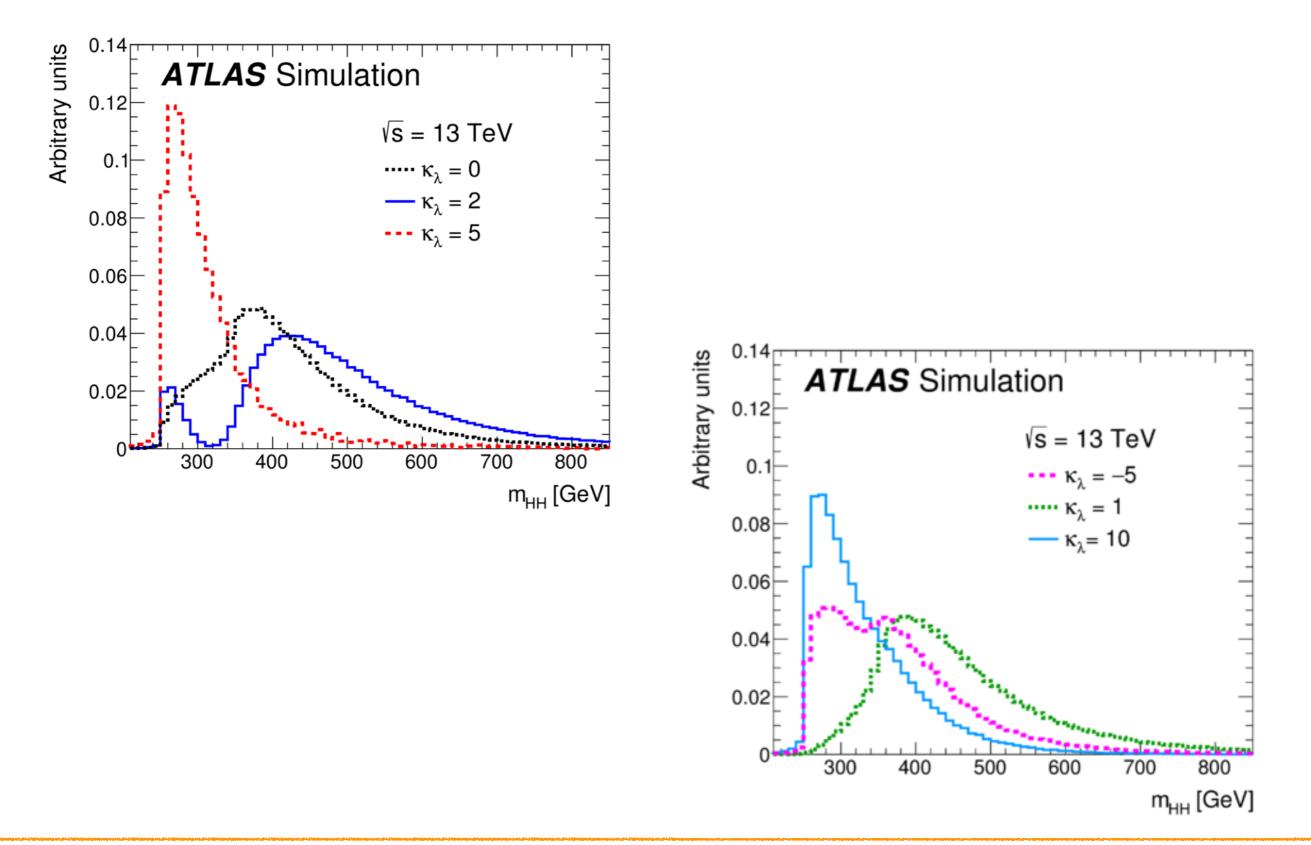
	Statistical-only		Statistical + Systemat		
	ATLAS	CMS	ATLAS	CMS	
$HH ightarrow b \bar{b} b \bar{b}$	1.4	1.2	0.61	0.95	
HH ightarrow b ar b au au	2.5	1.6	2.1	1.4	
$HH ightarrow b \bar{b} \gamma \gamma$	2.1	1.8	2.0	1.8	
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Combined 4.5		Combined		
			4.0		



[0.1,2.3] for the combination

---- bbZZ*(4I) ---- bbVV(h/hv)

Link to the paper


Expected significance of the di-Higgs search for each individual channels as well as their combination with 3000 fb⁻¹

- Second minimum of the likelihood is excluded at 99.4% CL
- Expected a measurement of κ_{λ} at 50%, if HH is observed with a significance of 4σ

Adele D'Onofrio

Auxiliary Material, mHH

