Observation of vector boson scattering ZZjj process with the ATLAS detector

Jing Chen

The 5th China LHC Physics Workshop

University of Science & Technology of China

Oct. 24th, 2019

Report Number: ATLAS-CONF-2019-033

Introduction

https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.luminosity

- The presence of the Higgs boson prevents the VBS amplitudes from violating unitarity at the TeV scale!
- Vector boson scattering is a key process to probe the nature of electroweak symmetry breaking.

CLHCP2019

VBS VVjj measurements in ATLAS and CMS

13TeV	Observed (expected) significance		Challenges
	ATLAS	CMS	
ssWW	6.5(4.4)σ Phys. Rev. Lett. 123 (2019) 161801	5.5(5.7)σ PRL 120 (2018) 081801	First observation of VBS: large ratio of EW to strong production cross-sections.
WZ	5.3(3.2)σ Phys. Lett. B 793 (2019) 469	2.2(2.5) σ PLB 795 (2019) 281	Similar cross-section as ssWW, but larger QCD background.
ZZ	<i>lllljj</i> + <i>llvvjj lllljj</i> $5.5(4.3)$ $2.7(1.6)σ$		<i>lllljj</i> channel: small cross-section, low background, fully reconstructed final state. <i>llvvjj</i> channel: relatively large cross- section, complex background components, large uncertainties from
Frst observation of EW ZZjj production			jet/E_T^{miss} reconstruction.

Analysis overview

- Physics goals
 - Measure the ZZjj cross-section (EW + QCD):

Measure the inclusive cross-section for *lllljj* and *llvvjj* separately in their corresponding fiducial volume.

- Evidence on EW VBS ZZjj

Combine *lllljj* and *llvvjj*, fit the MVA output to extract the significance of EW component and signal strength (μ_{EW}).

Selections

	$\ell\ell\ell\ell j j$	<i>ℓℓνν</i> jj	
Electrons	$p_{ m T} > 7 \; { m GeV}, \eta < 2.47 \ d_0/\sigma_{d_0} < 5 \; { m and} \; z_0 imes \sin heta < 0.5 \; { m mm}$		
Muons	$\begin{array}{l} p_{\rm T} > 7 \ {\rm GeV}, \ \eta < 2.7 \\ d_0/\sigma_{d_0} < 3 \ {\rm and} \ z_0 \times \sin \theta < 0.5 \ {\rm mm} \end{array} p_{\rm T} > 7 \ {\rm GeV}, \ \eta < 2.5 \end{array}$		
Jets	$p_{ m T} > 30~(40)~{ m GeV}$ for $ \eta < 2.4~(2.4 < \eta < 4.5)$	$p_{\rm T} > 60~(40)~{\rm GeV}$ for the leading (sub-leading) jet	
ZZ selection	$p_{\rm T} > 20, 20, 10~{\rm GeV}$ for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-} - m_Z + m_{\ell^{'+}\ell^{'-}} - m_Z $ $m_{\ell^+\ell^-} > 10~{\rm GeV} \text{ for lepton pairs } \bigstar$ $\Delta R(\ell,\ell') > 0.2$ $66 < m_{\ell^+\ell^-} < 116~{\rm GeV}$	$\begin{array}{l} p_{\mathrm{T}} > 30 \; (20) \; \mathrm{GeV} \; \mathrm{for} \; \mathrm{the} \; \mathrm{leading} \; (\mathrm{sub-leading}) \; \mathrm{lepton} \\ \mathrm{One} \; \mathrm{OSSF} \; \mathrm{lepton} \; \mathrm{pair} \; \mathrm{and} \; \mathrm{no} \; \mathrm{third} \; \mathrm{leptons} \; \bigstar \\ 80 < m_{\ell^+\ell^-} < 100 \; \mathrm{GeV} \; \bigstar \; \bigstar \\ \mathrm{No} \; \mathrm{b}\text{-tagged jets} \; \bigstar \\ E_{\mathrm{T}}^{\mathrm{miss}} \; \mathrm{significance} > 12 \; \bigstar \end{array}$	
Dijet selection	Two most energetic jets with $m_{jj} > 300 \text{ GeV}$ and $\Delta y(jj) > 2 \bigstar \bigstar$	$\begin{array}{c c} y_{j_1} \times y_{j_2} < 0 & \bigstar \\ & m_{jj} > 400 \text{ GeV and } \Delta y(jj) > 2 & \bigstar \end{array}$	

- ★ To reject events from low mass resonances
- Relatively loose m_{jj} cut
 to keep more events for
 further MVA studies

- Reduce top background
- ★ Suppress W background
- ★ Suppress Z+jets background
- Back-to-back topology, enhance S/B ratio

- *lllljj* QCD background ($qq \rightarrow ZZjj$ and $gg \rightarrow ZZjj$):
 - -- QCD CR: $\left|\Delta Y_{jj}\right| < 2 \text{ or } m_{jj} < 300 \text{ GeV}$
 - -- Simultaneous fit SR & QCD CR.
 - -- Theoretical uncertainty mainly from generator modelling uncertainty (Sherpa vs. MG).

-- Jet pile-up uncertainty: high-mu vs. low-mu comparison as additional systematic.

-- The modelling of QCD ZZjj has been cross checked in another high centrality CR.

- *lllljj* Others background: -- Fake lepton background
 - Fake factor method is used.

- Systematics: varying "poor" lepton definition, MC contamination, use one bin fake factor instead of p_T/η dependent ones, fake factor difference from data and MC

```
-- WWZ...: MC
```

CLHCP2019

Jing Chen (USTC)

- II $\nu\nu$ Non-Resonant ($t\bar{t}$, WW, Wt, $Z \rightarrow \tau\tau$, single top) background:
 - -- Non-Resonant background: $e\mu$ CR
 - Exploit ratio of decays ee: $\mu\mu$:e μ = 1:1:2
 - In kinematic region $Q(p_T, \eta)$:

$$\begin{aligned} \epsilon^{Q} &= \sqrt{\frac{N_{ee}^{Q}}{N_{\mu\mu}^{Q}}} \\ N_{SR \ ee}^{Q,e\mu} &= \frac{1}{2} \times \epsilon^{Q} \times N_{e\mu \ CR}^{sub,bkg} \\ N_{SR \ \mu\mu}^{Q,e\mu} &= \frac{1}{2} \times \frac{1}{\epsilon^{Q}} \times N_{e\mu \ CR}^{sub,bkg} \end{aligned}$$

-- Systematics:

Main backgrounds: Non-Resonant and WZ.

- ϵ factor's dependency on different binning method.
- ϵ factor's uncertainty due to data stat. uncertainty.
- Shape difference between MC and data driven based methods.

IIvv WZ background:

-- WZ background: 3l CR (eee, eeμ, μμe, μμμ)

-- WZ background. Si Charles, etc., $N_{MC}^{3l CR} = N_{MC}^{2l SR} \times sf_{WZ} = N_{MC}^{2l SR} \times \frac{N_{data-nonWZMC}^{3l CR}}{N_{MC}^{3l CR}} = N_{data-nonWZMC}^{3l CR} \times \frac{N_{data-nonWZMC}^{3l CR}}{N_{MC}^{3l CR}} = N_{$

Events / Bin

-- Scale factor: 0.85

-- Systematics:

- Statistical uncertainty on sf_{WZ} due to CR data.

- Experiment and theory uncertainties on the WZ transfer factor and signal region WZ shape.

- EW WZ cross section: Use the SM cross section for EW WZ. Treat the prediction v.s. measurement $(\mu_{EWKWZ} = 1.77)$ difference as the cross-section uncertainty for EW WZ. Phys. Lett. B 793 (2019) 469

BDT Output

CLHCP2019

• IIvv Others background:

-- Z+jets background:

- Use SR MC to estimate Z+jets shape.
- Choose low E_T^{miss} significance region as CR.

- Fit CR data – nonZjMC. Extrapolate fit result to SR to derive SR Z+jets event yield.

- Systematics: variations in the fitting functions, differences between estimated and simulated yields and distributions.

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u j j$
EW ZZjj	$20.6\pm~2.5$	12.3 ± 0.7
${ m QCD}\;ZZjj$	77.4 ± 25.0	17.2 ± 3.5
${ m QCD}~ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	-	21.4 ± 4.8
WZ	-	22.8 ± 1.1
Others	$3.2\pm~2.1$	1.2 ± 0.9
Total	114.3 ± 25.6	78.4 ± 6.2
Data	127	82

ZZ \rightarrow IIII,VVV, ttV, ttVV backgrounds: [MC
---	----

- Event yields:
 - -- uncertainties:

stat.+syst.

-- Minor backgrounds

are summed together as 'Others'.

Cross-section

- The definition of fiducial regions are very similar with detector-level selections by using particle-level physics objects.
 - -- *lllljj* channel: loose $m_{l^+l^-}$ to [60, 120]GeV to reduce migration effect.
 - -- *llvvjj* channel: to simplify the lepton selections, loose electron eta cut to
- 2.5. Use truth E_T^{miss} >130GeV to instead of E_T^{miss} significance>12.
- Fiducial cross-sections for the inclusive production of the EW and QCD processes are measured separately in individual channels.

$$C = \frac{N_{detector-level}}{N_{FV-truth}} \qquad \sigma = \frac{N_{data} - N_{background}}{\mathcal{L} \times C}$$

<i>lllljj</i> C factor	0.699 ± 0.003 (stat) \pm 0.012 (theo) \pm 0.028 (exp)
<i>llvvjj</i> C factor	0.216 ± 0.003 (stat) \pm 0.008 (theo) \pm 0.008 (exp)

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj$	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$1.14 \pm 0.04 (\text{stat}) \pm 0.20 (\text{theo})$
llvvjj	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

Search for EW ZZjj

• MVA

- Gradient Boosted Decision Tree (BDTG) method is used.
- In *lllljj* channel, training is performed based on EW and QCD samples.
- In *llvvjj* channel, the training signal is EW, all other backgrounds are used except Z+jets.

• Fit procedure

- To extract EW process, a profile likelihood fit is performed on BDTG response.
- Simultaneous fit in SR and QCD *lllljj* CR. The measured fiducial cross-section over the SM prediction for EW ZZjj production (μ_{EW}) is taken as the **parameter of interest**. μ_{QCD}^{lllljj} represents the normalization factor of QCD ZZjj production.
- Systematics enter the likelihood as nuisance parameters with Gaussian constrains.
- For signal process, only shapes uncertainties are considered.
- An additional 1.7 k-factor is applied to gg sample. Phys. Rev. D 92 (9 2015) 094028
- Experiment systematics are treated as correlated.
- Theoretical uncertainties for the ZZjj production are uncorrelated between the two channels (different fiducial volume).

- QCD scale uncertainty in *lllljj* SR, CR and generator modelling uncertainty are uncorrelated (large phase-space difference).

Search for EW ZZjj

- Observed and expected distributions:
 - -- M_{ZZ} is scaled with μ_{EW} and μ_{QCD} form final fit.
 - -- BDT output plots are post-fit results.
 - -- Data distributions are consistent with predict ones.

Search for EW ZZjj

 Normalizations and shapes uncertainties of background processes are considered, while theoretical uncertainties associated to the EW signal normalization are dropped.

	$\mu_{ m EW}$	$\mu_{ m QCD}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.54 ± 0.42	0.95 ± 0.22	5.48 (3.90) σ
$\ell\ell u ujj$	0.73 ± 0.65	-	$1.15~(1.80)~\sigma$
Combined	1.35 ± 0.34	0.96 ± 0.22	5.52 (4.30) σ

• The EW ZZjj cross-section (combing the two channels) in the fiducial volume is **0.82** \pm **0.21** fb, calculated as $\mu_{EW} \times \sigma_{SM}$ ($\sigma_{SM} = 0.61 \pm 0.03$ fb).

Summary

• First observation of VBS ZZjj process with full Run2 datasets (139fb⁻¹).

-- Inclusive cross sections for *lllljj* and *llvvjj* channels are measured in dedicated fiducial volume and found to be **consistent** with the SM predictions.

-- Observed(expected) significance of EW production is **5.5σ(4.3σ)**.

- Although the ZZjj process is very rare, but it's fully reconstructed final state in *lllljj* channel provides maximal information to probe SM and interpret BSM.
- The observation of EW ZZjj production is a new milestone reached in the study of EW VVjj production. The precision measurements can help us understand the nature of EWSB.
- A nice poster will be presented by Jing Li tonight!

backup

15

Cross-section measurements in CMS

CLHCP2019

Cross-section measurements in ATLAS

CLHCP2019

The ATLAS detector

Calorimeters (CALO)

-Pb/LAr accordion structure - e/γ trigger identification and measurement : $\sigma/E \sim 10\%/\sqrt{E}$ -HAD: trigger and measurement of jets and E_T^{miss} -Forward calorimeters(FCAL): covers up to $|\eta| < 4.9$

Inner detector (ID)

-|η|< 2.5
-Si pixels, Si strips, TRT
-Precise tracking and vertexing(in 2014, add Insertable B-layer)
-e/π separation

Muon Spectrometer (MS) -Triggering |η|< 2.4 -Precision Tracking |η|< 2.7

- -Magnetic filed produced by toroids
- -Muon momentum resolution < 10%

up to 1 TeV

• *lllljj* background: Fake lepton backgroun

-- Fake-factor measured in jet-enriched samples

- Z+jets CR: same-flavor opposite-charge lepton pair under Z mass and two additional jets.

- $t\bar{t}$ CR: two jets (at least one bjet) and two high p_T isolated leptons forming an $e\mu$ pair with $E_T^{miss} > 50 \text{GeV}, m_T^W < 60 \text{GeV}$.

- $f = N_{good} / N_{poor}$ (flavor and pT/eta dependent).

- Poor electrons are defined by reverting isolation or eleID cuts.

-- *lllljj* fake CR : SR with 1 or 2 leptons passing poor lepton definition.

- -- Fake contribution in signal region:
 - $N_{fake} = (N_{gggp} N_{gggp}^{ZZ}) \times f (N_{ggpp} N_{ggpp}^{ZZ}) \times f \times f$
 - ZZ contribution is subtracted.
 - The second term is due to double counting of N_{gggp} and N_{ggpp} .

-- Systematics: varying "poor" lepton definition, MC contamination, use one bin fake factor instead of p_T/η dependent ones, fake factor difference from data and MC

31 CR & eµ CR

The $e\mu$ CR selections are listed as:

- two different-flavour opposite-charge leptons
- veto events with any additional lepton with Loose ID and $P_T > 7$ GeV
- $80 < M_{\ell\ell} < 100 \text{GeV}$
- $P_T^{\ell_1} > 30 \text{GeV}, P_T^{\ell_2} > 20 \text{GeV}, |\eta_{\ell}| < 2.5$
- $n_{jets} \ge 2, P_T^{j_1} > 60 \text{GeV}, P_T^{j_2} > 40 \text{GeV}, |\eta_j| < 4.5$
- $M_{ii} > 400 \text{GeV}, \Delta Y_{JJ} > 2, Y_{i1} \times Y_{i2} < 0$

The definition of 3lCR is:

• $80 < M_{\ell\ell} < 100 \text{GeV}$

B-jet veto

- $\circ \ \ {\rm MET\ Significance} > 12 \\ \circ \ \ P_T^{\ell_1} > 30 {\rm GeV}, P_T^{\ell_2} > 20 {\rm GeV}, |\eta_\ell| < 2.5, \, {\rm medium} \\ \end{cases}$
- $p_{T}^{\ell 3rd} > 20 \text{GeV}, |(\eta^{\ell 3rd})| < 2.5$, medium
- Transverse mass $m_T^W > 40 \text{GeV}$ Z+jets
- B-jet veto: 85% working point
- $\circ n_{jets} \geq 2$
- $P_T^{J_1} > 60 \text{GeV}, P_T^{J_2} > 40 \text{GeV}$

 $m_{\rm T}^W = \sqrt{2P_T^{\ell 3} E_{\rm T}^{\rm miss}} \left[1 - \cos \left(\Delta \phi \left(P_T^{\ell 3}, E_{\rm T}^{\rm miss} \right) \right) \right]$

To keep more statistics, no m_{ii} or $|\Delta Y_{ii}|$ cuts and loose MET • MET Significance > 3 significance. Jing Chen (USTC) **CLHCP2019** 20

Uncertainties

- Theoretical uncertainties:
 - -- PDF, QCD scale, α_s , parton showering (PS).

- PDF: the envelope of the NNPDF internal errors and the differences between the nominal and alternative PDFs.

- QCD scales: 7-point scale variations of the renormalization (μ_r) and the factorization scale (μ_f) ({0.5,0.5}, {1,0.5}, {0.5,1}, {1,1}, {2,1}, {1,2}, {2,2}). The largest deviation is chosen as the uncertainty.

- PS: comparing the nominal Pythia8 parton showering with the alternative Herwig7 algorithm.

- α_s : varying the α_s value within ± 0.001 .

-- Interference effect between the EW and QCD processes is 7%(2%) in *lllljj(llvvjj*) channel. Treat as an extra uncertainty in the EW signal predictions.

-- Generator modelling uncertainty: estimated by comparing Sherpa with MadGraph5 _aMC@NLO 2.6.1 predictions at particle level.

• Experimental uncertainties:

-- luminosity: 1.7%.

-- The momentum scale and resolution of leptons and jets, lepton reconstruction and selection efficiencies, trigger selection efficiency, the calculation of the E_T^{miss} soft-term, the pile-up correction, and the b-jet identification efficiency: 5-10%.

-- Jet pile up uncertainty.

Jing Chen (USTC)