Straight Line Fit

Hongpeng Wang, LiangLiang Wang 2019-12-19

Introuduciton

• Straight line model $l(d\rho, \phi_0, d_Z, tg\lambda)$

• Minimization method *i* :number of clusters $\sigma^{X/V}$: resolution of X/V

$$\chi_{tot}^2 = \Sigma_i \left(\left(\frac{X_i^{meas} - X_i(L)}{\sigma_i^X} \right)^2 + \left(\frac{V_i^{meas} - V_i(L)}{\sigma_i^V} \right)^2 \right)$$

MC simulation

- 500,000 events generated. 36856 reserved.
- Clusters : Smeared MC truths with resolution $\sigma = 130 \ \mu m$.
- Scintillator position
 W * L: 160mm*500mm .
 Distance: 600 mm.
- Particle gun position on upper plane &hit position on bottom plane.
- Particle gun:
 - $|cos\theta| > 0.6$
 - $\phi \in (-2.5, -0.5)$

Limited by G4, Just reach 180 mm.

Selection criteria

• Requirements of strips : time: (-180,100) charge: Q>0

• X-V clusters:

	run1	run2	run3	run4	run5
At least one	30350	31604	28327	44072	18018
Only one in Layer 1	2903	4110	3700	2904	954
Only two in Layer 2	13140	10468	8526	15293	9
Three sheets	6713	12289	12225	22377	2

Strategy

- Data: choose the cluster with largest Q.
- MC: ~50% events has two xvcluster in inner layer($\phi > 0$).

Discard one by the line linked between clusters in middle layer.

• Just use 3 clusters in fit.

Straight Line Fit by CC clusters

Run2

Run3

h3

Entries 9160 Mean 15.34 RMS 113.2

²⁰⁰ d²⁰/m⁶⁰⁰ 800

²⁰⁰ 400 600 800 dz/mm

h3

Entries 12398

Mean -12.13

RMS 111.5

h3

h3

Entries 22503

Mean -12.74

112

RMS

Mean -12.47

ntries 12312

110.5 RMS

 χ^2

MC

Data

Offset effect

- Link line between clusters in middle layer , and calculate the cluster in inner layer.
- $\Delta phi = phi_{real} phi_{cal}$

