Updates on CGEM-IT Geometry: the cables

L. Lavezzi

West Side

East Side

Materials

Grey → Aluminum

Yellow → Permaglas

Cables \rightarrow copper + polyethilene

Cables – HV / LV/ signal

- container with an appropriate density
 - ratio copper/cover
 - fill factor
- solid volumes inside the container
- what remains is cables

Cable density (last update)

Cables have been weighted (Ilaria)

HV

- length = 1170 mm
- diameter = 4 mm
- mass = 51.5 g

LV

- length = 1000 mm
- diameter = 4 mm
- mass = 25.1 g

• mass = 47.3.5 g

 $density_{CABLE} = mass / volume$

A Fill Factor must be taken into account, for:

- the available volume
- the number of cables

 $density = density_{CABLE} \times FF + density_{AIR} \times (1-FF)$

east and west passive elements are identical beside the *new west ring*

Slice and look from the side

Correspondence CAD – GEANT4

East Flange layer 3 layer 2 layer 1 0 **Support Flange** flanges/rings

Volume available for the cables

Volume available for the cables

Volume available for the cables

Number of cables in the regions

east #cables				
from each layer				
	n L1	n L2	n L3	
HV	6	12	12	
LV	8	14	18	
signal	8	18	18	

west #cables				
from each layer				
	n L1	n L2	n L3	
HV	7	14	14	
LV	8	14	18	
signal	8	14	18	

WE NOW HAVE THE NUMBER OF CABLES

Calculation of the fill factor

Compute the fill factor:

• for each kind of cable, k = HV, LV, signal

• for each region j = I, II, III

$$ff_{j,k} = \left(\sum_{i=0}^{j} N_{i,k}\right) \times \frac{V_{i,k}}{V_{i}}$$

where

- $N_{i,k}$ = # cables of type k, in region i
- $V_{i,k}$ = volume of cable of type l, in region I
- then apply

 $density = density_{CABLE} x FF + density_{AIR} x (1-FF)$

Average density - east

- the three colored graphs show the density of each kind of cable in each region
- the short dotted lines (*mean in region j*) show the average density of the cables in each region
- the **bold dotted line** (*mean density*) shows the average of all the densities, which I would use in the code

Average density - west

- the three colored graphs show the density of each kind of cable in each region
- the short dotted lines (*mean in region j*) show the average density of the cables in each region
- the **bold dotted line** (*mean density*) shows the average of all the densities, which I would use in the code

Conclusions

• We want to see the **average effect** on the detectors which are *after* the CGEM-IT

...THEN...

- It looks reasonable to:
 - use a mean density in the whole volume occupied by the cables
 - use the same mean density for east and west cables

THANK YOU FOR THE ATTENTION