

Gem Reconstruction And Analysis Library

by Riccardo Farinelli INFN - Ferrara (Italy)

on behalf of the BESIII CGEM-IT group

• The triple-GEM detectors and the setup configuration

• Data reconstruction

• Tracking and alignment algorithms

• Analysis procedures and results

GEM - Gas Electron Multiplier

invented by F. Sauli in 1997

- copper coated polymer foil
- pierced with thousands of holes $\emptyset \sim 50 \,\mu m$

HV is applied to its faces (200/400 V)

 \rightarrow the drifting electrons which enter the holes find a field intense (some tenth kV/cm) enough to create avalanche multiplication

CGEM-IT - Cylindrical GEM Inner Tracker

The first Cylindrical GEM was build by KLOE-2 (LNF)

BESIII PECULIARITIES

- double view anode \rightarrow 3D position
- analog readout \rightarrow time and charge
- intense magnetic field: 1T

PERFORMANCES

- 130 μ m on *xy* (orthogonal to the beam)
- < 1mm on z (parallel to the beam)

POSITION RECONSTRUCTION

- 1. charge centroid
- 2. micro–TPC (μ –TPC)
- 3. merging of 1 and 2

CHEP conference, 04 Nov. 2019 - Adelaide

Test Beam setup

- H4 beam line @ SPS, NA CERN
- GOLIATH dipole in [-1.5, +1.5] T
- muons/pions @ 150 GeV/c

STANDARD SETUP

- Planar/Cylindrical chambers
- Trigger: plastic scintillators
- **Tracking stations**: triple–GEMs with double view readout
- Test detectors: planar/cylindrical triple– GEMs with different settings
- electronics: ASIC: APV-25, TIGER

Data reconstruction: GRAAL

RECONSTRUCTION PROCEDURE

anode strip \rightarrow raw data \rightarrow offline reconstruction

GRAAL performs

- 1. Selection of **hits** with charge higher than a threshold
- 2. Reconstruction of each hit time
- 3. Association of contiguous hits: cluster
- 4. Track reconstruction (from the trackers)
- 5. Residual calculation (on test detectors)
- 6. Alignment procedure
- 7. Final evaluation of the efficiency and resolution

Hit digitization

two ASIC chips used:

- 1. **APV-25**
- 2. TIGER

- CMS Collaboration
- 128 channels
- 27 charge samplings (every 25 ns)
- a typical event lasts 4/5 time bins
- we obtain both charge and time for each strip
- the highest value of charge is the *hit* charge
- time must be reconstructed

fit the rising edge with a Fermi–Dirac function

$$Q(t) = Q_0 + \frac{Q_{\text{max}}}{1 + \exp\left(-\frac{t - t_{\text{FD}}}{\sigma_{\text{FD}}}\right)}$$

to extract the hit time (t_{FD}) and error (σ_{FD})

[L. L. Jones *et al.*, Conf.Proc. C9909201,162-166 (1999);
 M. J. French *et al.*, Nucl. Instr. and Meth. A 466, 359-365 (2001)]

CHEP conference, 04 Nov. 2019 - Adelaide

two ASIC chips used:

- 1. APV-25
- 2. TIGER Torino Integrated GEM Electronics for Readout
 - Custom ASIC for the CGEM–IT

- GRAAL reconstructs both
- In the following only APV-25 data will be presented

Cluster digitization

• contiguous strips with charge higher than the threshold

position reconstructed as average of the fired strip weighted by the charge on each strip

$$x_{\rm CC} = \frac{\sum_{i}^{N_{\rm hit}} Q_{{\rm hit},i} x_{{\rm hit},i}}{\sum_{i}^{N_{\rm hit}} Q_{{\rm hit},i}}$$

drift gap as a TPC gives the position of each ionization by the drift time and velocity \rightarrow linear fit

$$r_{\mu \rm TPC} = \frac{gap/2 - b}{a}$$

1

particle position reconstruction \rightarrow two algorithms:

T. Alexopoulos et al., Nucl. Instr. And Meth. A617 (2010) 161;

CHEP conference, 04 Nov. 2019 - Adelaide

R.Farinelli

Tracking and alignment: planar chamber

- trackers are used to fit a track
- the point where the track passes on the test detector planes is used to compute the residuals as $x_{EXPECTED} x_{TEST}$
- used for alignment to account for:
- displacements

X

Tracking and alignment: planar chamber

- trackers are used to fit a track
- the point where the track passes on the test detector planes is used to compute the residuals as $\mathbf{X}_{\text{EXPECTED}} - \mathbf{X}_{\text{TEST}}$
- used for alignment to account for:
- displacements
- tilts

1600F

1400

1200F

Entries Mean

Std Dev

 χ^2 / nd

Prob Consta -4.07

0.6546

1.875e+04/92

-4.157 ± 0.000 00048 ± 0.00006

 1756 ± 0.0

Tracking and alignment: planar chamber

- trackers are used to fit a track
- the point where the track passes on the test detector planes is used to compute the residuals as mm $\mathbf{X}_{\text{EXPECTED}} - \mathbf{X}_{\text{TEST}}$
- used for alignment to account for:
- displacements
- tilts

CHEP conference, 04 Nov. 2019 - Adelaide

Tracking and alignment: cylindrical chamber

Analogous to planar chambers:

- compute residuals $\phi_{\text{EXPECTED}} \phi_{\text{TEST}}$
- \rightarrow correct for:
 - shift of the center along x/y
 - shift of the center along the beam dir.
 - rotations around cylinder axis

Analysis: efficiency

Residual of one chamber against the other:

 $\Delta x_{1,2} = x_{\text{detector},1} - x_{\text{detector},2}$

- to reduce systematics
- to eliminate the effect of tracking

Assumption: both chamber have the same efficiency:

$$\varepsilon_{1\&2} = \varepsilon_1 \, \varepsilon_2 = \frac{N_\varepsilon}{D_\varepsilon} \ , \, \text{if} \, \varepsilon_1 = \varepsilon_2 = \varepsilon - \varepsilon = \sqrt{\frac{N_\varepsilon}{D_\varepsilon}}$$

 $D\epsilon = \#$ events with succesful track reconstruction N $\epsilon = \#$ events with residual within 5 sigma

• Ar:
$$i$$
-C₄H₁₀ 90:10

- $\mathbf{B} = \mathbf{0}\mathbf{T}$
- Incident angle = 0°

•
$$E_{DRIFT} = 1.5 \text{ kV/cm}$$

Drift gap = 5 mm
different HV settings

[M. Alexeev *et al* 2019 *JINST* **14** P08018, R. Farinelli, 2019 JINST TH 002)]

CHEP conference, 04 Nov. 2019 - Adelaide

R.Farinelli

Analysis: resolution

Residual of one chamber against the other:

 $\Delta x_{1,2} = x_{\text{detector},1} - x_{\text{detector},2}$

- to reduce systematics
- to eliminate the effect of tracking

Assumption: both chamber have the same resolution:

[M. Alexeev *et al* 2019 *JINST* **14** P08018, R. Farinelli, 2019 JINST TH 002)]

CHEP conference, 04 Nov. 2019 - Adelaide

R.Farinelli

15

Analysis: merge CC w/ µTPC

CC and μ -TPC opportunely weighted provide an optimum solution

$$x_{\text{merge}} = w_{\text{cc}} \left(x_{\text{cc}} - \Delta_{\text{cc}} \right) + \left(1 - w_{\text{cc}} \right) x_{\text{tpc}}$$

• Choice of w_{CC} and w_{tpc} is **data driven**, with no bias \rightarrow selection of data different from the sample on which it is applied

• Two procedures, weighting according to cluster size or incident angle

Analysis: merge CC w/ μ TPC

CC and µTPC opportunely weighted provide an optimum solution

 $x_{\text{merge}} = w_{\text{cc}} \left(x_{\text{cc}} - \Delta_{\text{cc}} \right) + \left(1 - w_{\text{cc}} \right) x_{\text{tpc}}$

550_L

Resolution [µm] 500 • Planar chambers 450 CC - Ar:IC, H10 • Ar: $i-C_4H_{10}$ 90:10 400 HTPC - Ar:iC Hie 350 Merge(angle) - Ar:iC_H10 • B = 1T٠ 300 different angles 250 • $E_{DRIFT} = 1.5 \text{ kV/cm}$ ٠ 200 • Drift gap = 5 mm150 • 10k gain 100E-50^b -100 10 20 30 Track incident angle[deg]

CHEP conference, 04 Nov. 2019 - Adelaide

40

• GRAAL is a tool that can be applied not only to GEM, planar and cylindrical, but also to other MPGDs with segmented anode

• currently it is used for μ -RWELL reconstruction

Backup

Hit digitization: Time reference

• The measured time is the one between the trigger and the induction of the charge to the anode

 \bullet Only the time between the primary electron formation and their drift up to the first GEM is needed to use the μTPC

•A **Fermi-Dirac fit** is used to measure the rising time. Another Fermi-Dirac fits the leading time. They describe the time distribution

• The rising time of the time distribution represents the mean time taken by an electron to go from the first GEM to the anode

• The leading time is subtracted from the measured time then the μ TPC is used

Analysis: merge CC w/ µTPC

CC and μ TPC opportunely weighted provide an optimum solution

CHEP conference, 04 Nov. 2019 - Adelaide

R.Farinelli

Example of GRAAL output

