

# Collectivity of strange and charm hadrons and $D_s^{\pm}$ production at RHIC-STAR

Shusu Shi 施梳苏

Central China Normal University 华中师范大学

July 17 - 25, 2019 Workshop on QCD Physics & Study of the QCD Phase Diagram and Newtype Topologic Effect, Weihai, China

## Outline



#### > Introduction

- Heavy Ion Collisions
- Results and Discussions
- > Summary and Outlook

### **Anisotropic Flow**





$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos\left[n(\phi - \Psi_n)\right]$$

 $v_1$ : directed flow;  $v_2$ : elliptic flow;  $v_3$ : triangular flow



#### **STAR Detectors**





## **Heavy Ion Collisions**





**2000 – 2016** RHIC+LHC High energy collisions *QGP properties* 

**2010 – 2017:** RHIC BES-I 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4 GeV

**2019 – 2021:** RHIC BES-II 7.7, 9.2, 11.5, 14.5, 17.1, 19.6 GeV FXT: 7.7, 4.5, 3.9, 3.6, 3.0 GeV

**2022 – :** RHIC+FAIR NICA BES-III Fixed-target programs

Explore the QCD phase structure!

### **Beam Energy Scan**



| √S <sub>NN</sub><br>(GeV) | Events (10 <sup>6</sup> ) | BES II / BES I     | Weeks | μ <sub>B</sub><br>(MeV) | T <sub>CH</sub><br>(MeV) |
|---------------------------|---------------------------|--------------------|-------|-------------------------|--------------------------|
| 200                       | 350                       | 2010               |       | 25                      | 166                      |
| 62.4                      | 67                        | 2010               |       | 73                      | 165                      |
| 54.4                      | 1000                      | 2017               |       |                         | 165                      |
| 39                        | 130                       | 2010               |       | 112                     | 164                      |
| 27                        | 70 ( <mark>1000</mark> )  | 2011(2018)         |       | 156                     | 162                      |
| 19.6                      | <b>400</b> / 36           | <b>2019</b> /2011  | 3     | 206                     | 160                      |
| 14.5                      | <b>300</b> / 20           | <b>2019</b> /2014  | 2.5   | 264                     | 156                      |
| 11.5                      | <b>230</b> / 12           | <b>2020</b> /2010  | 5     | 315                     | 152                      |
| 9.2                       | <b>160</b> / 0.3          | <b>2020</b> / 2008 | 9.5   | 355                     | 140                      |
| 7.7                       | <b>100</b> / 4            | <b>2021</b> / 2010 | 14    | 420                     | 140                      |
| 17.1                      | 250                       | 2021               |       |                         |                          |

#### **Partonic Collectivity**



 $v_2(\phi)$  versus  $v_2(p)$ 



Model calculations: T. Hirano et al., ; PRC77, 044909 (2008), PRC92, 044907 (2015)



- > Ideal hydro + hadron cascade (JAM)
- Small hadron cross section + hadronic re-scattering effect on  $v_2$ Mass  $\phi > mass p \rightarrow v_2(\phi) > v_2(p)$ 
  - **Break mass ordering for**  $\phi$  **mesons and protons**

# $v_2(\phi)$ versus $v_2(p)$





Model study indicates
 with increasing hadronic
 cascade time (more hadronic
 re-scattering),
 the v<sub>2</sub>(φ)/v<sub>2</sub>(p) ratio
 increases

> The ratio  $v_2(\phi)/v_2(p)$ is  $4.35 \pm 0.98 \pm ^{0.66}_{0.45}$  at  $p_T = 0.52 \text{ GeV/c in } 0.30\%$ 

The effect of late hadronic interactions on the proton  $v_2$ 

➢ Energy dependence (200, 54.4 and 27 GeV): hadronic contribution on the partonic flow

STAR: Phys. Rev. Lett.116, 062301 (2016) Model calculations: T. Hirano et al., ; PRC77, 044909 (2008), PRC92, 044907 (2015)

### **Directed Flow v<sub>1</sub>: Softest Point**



#### **BESII : centrality dependence**



**dv<sub>1</sub>/dy**: the slope of directed flow versus rapidity near mid-rapidity

 Hydrodynamic calculation with the 1st-order phase transition motivates the study

Net-proton slope changes sign twice

EOS softest point?

UrQMD fails to reproduce the data

The slope of net-p is based on expressing the y dependence of v1 for all protons as:

 $[v_1(y)]_p = r(y)[v_1(y)]_{\bar{p}} + [1 - r(y)][v_1(y)]_{\text{net-}p}$ 

r: the ratio of anti-p to p.

STAR: Phys. Rev. Lett. 112, 162301(2014) H. Stoecker, Nucl. Phys. A 750, 121(2005)

#### **Directed Flow v<sub>1</sub>: \$\$ Mesons**





Mesons and all produced baryons show negative slope except \$\u03c6 mesons when collisions energy < 14.5 GeV</p>
Change of medium property? High precision data needed: BESII

STAR: Phys. Rev. Lett. 120, 062301(2018)

### Particle vs. Anti-particle v<sub>2</sub>





Baryonic Chemical Potential µ<sub>B</sub> (MeV) BESII : multi-strange hadrons

- The difference between particles and anti-particles increases with decreasing beam energy NCQ scaling breaks
- Model comparison

STAR: Phys. Rev. Lett. 110 (2013) 142301

- Hydro + Transport (UrQMD): consistent with baryon data
- Nambu-Jona-Lasino (NJL) model (partonic + hadronic potential): hadron splitting consistent
- > Analytical hydrodynamic solution:  $\Delta v_2^{\bar{p}} > \Delta v_2^{\Lambda} > \Delta v_2^{\Xi} > \Delta v_2^{\Omega}$

J. Steinheimer et al., PRC86, 44903(2012); J. Xu et al., PRL112, 012301(2014); Y. Hatta et al., PRD92, 114010(2015)

#### φ Meson v<sub>2</sub>





φ meson is less
 sensitive to late
 hadronic interactions<sup>[1]</sup>

Sizable  $\phi$  meson v<sub>2</sub>: comparable to 19.6 GeV

High statistics and more energies below 20 GeV needed!

STAR: Phys. Rev. C 88, 014902(2013)Phys. Rev. C 93, 014907(2016)[1] STAR: Phys. Rev. Lett. 116, 062301(2016)

#### Multi-strange Hadron v<sub>2</sub> in BESII



- > BESI:  $v_2$  of multi-strange hadrons and  $\phi$  mesons seems dropping when collision energy < 20 GeV
- BESII: precise measurements will offer information on partonic vs. hadronic degree of freedom: QCD phase structure

BESII : multi-strange hadrons and  $\phi$  meson

#### **Invariant Mass distribution**





> 2014+2016 data (860 M + 1000 M events)
 > Improved signal number and significance.

### **p**<sub>T</sub> Spectrum





Dataset: year 2014 + 2016

Centrality dependence of  $\ensuremath{p_{\mathsf{T}}}$  spectrum

# $D_s^{\pm}/D^0$ Ratio





- D<sup>±</sup>/D<sup>0</sup> ratio: larger enhancement (~1.5-2 times) relative to PYTHIA, no clear centrality dependence.
- Consistent well with ALICE measurements.
- Strangeness enhancement + coalescence hadronization mechanism.

ALICE data: JHEP, 2018, 2018(10): 174 EPJC, 2017, 77: 550

# $D_s^{\pm}/D^0$ Ratio





 Coal. + frag. : consistent well for 1.5 <p<sub>T</sub> < 4 GeV/c, Coal. : consistent well for 4 < p<sub>T</sub> < 8 GeV/c.</li>

> Seq. coal. : a little higher than our measurement for  $1.5 < p_T < 4$ GeV/c, lower than that for  $4 < p_T$ < 8 GeV/c.

Strangeness enhancement + coalescence hadronization play an important role for charm quark hadronization.

Catania: EPJC 2017, 77: 348 Tsinghua: arxiv: 1805.10858v1

## Summary



- > Top Energy Collisions
  - > Partonic collectivity: *light flavor to charm*
  - $\sim v_2(\phi)/v_2(p)$ : hadronic contribution on partonic flow
  - $\succ D_s^{\pm}$  production: charm quark hadronization mechanism
- Beam Energy Scan II
  - ➢ v₁ slope of net-proton: non-monotonic as energy
  - $\blacktriangleright \phi$  meson v<sub>1</sub>: slope change, sensitive to properties of the medium?
  - $\triangleright \phi$  meson and multi-strange v<sub>2</sub>: *Partonic vs. hadronic*

## **BES-II is Ongoing**



#### Electron cooling + longer beam bunches for BES-II factor 4-15 improvement in luminosity compared with BES-I

#### **Detector upgrade**

- Event Plane Detector important for flow and fluctuation analyses
- > iTPC upgrade

increases TPC acceptance to ~1.7 in  $\eta$ ; improves dE/dx resolution

#### ETOF upgrade

New charged hadron PID capabilities for  $1.1 < |\eta| < 1.6$ 

#### **Fixed target program**

extends STAR's physics reach to region of compressed baryonic matter

#### RHIC BES-II: 2019-2021

**19.6, 17.1, 14.5, 11.5, 9.2 and 7.7 GeV** Focus on  $\sqrt{s_{NN}} \le 20$  GeV region

