STAR Forward Tracking System Simulation

Zhenyu Chen 陈震宇 Shandong University Stony Brook University & BNL

With inputs from Te-Chuan Huang, James Brandenburg

Outline

- 1. Detector geometry
- 2. Hit reconstruction
- 3. Tracking performance
- 4. New tracking algorithm development
- 5. Known issues and future work

Detector geometry

Detail silicon tracker geometry

- | —- Disk (Air)
 - |--- Half ring (Air)
 - |--- Solid part (aluminium)
 - |—- vacuum part (Air)
 - |—- Wedge (Air)
 - |-- Inner wedge (Air)
 - |—- Mechanical (PEEK)
 - |—- Hybrid (Kapton)
 - |-- Silicon (Silicon)
 - |—- Outer wedge (Air)
 - | —- Mechanical (PEEK)
 - |--- Hybrid (Kapton)
 - |-- Silicon (Silicon)

Credit: Te-Chuan Huang

New sTGC geometry

sTGC geometry change in order to:

- Fit in pole-tip with FEE and RDO
- Leave space to lift and move pole-tip

Hit Reconstruction

Silicon hit reconstruction

Credit: Te-Chuan Huang

Zhenyu Chen - QCD Weihai 2019

Strip width = 0.32 cm; x, y resolution 100 μm Total channel # for entire sTGC = 14,780 # of channel for each chamber <= 512

Zhenyu Chen - QCD Weihai 2019

Tracking performance

Tracking performance – PP <mult_{GEN}^{foward}> ≈ 5

80% efficiency flat over pT & drops at high eta The sTGC hole introduce a sharp efficiency valley in phi

Tracking performance – PP

<mult_{GEN}^{foward}> \approx 5

Good pT resolution and charge identification Meet the requirement for Cold QCD program

Tracking performance – AuAu

Eff = (GEN matched)/(GEN)

 $50 \leq \text{mult}_{\text{GEN}}^{\text{foward}} < 100$ $100 \le \text{mult}_{\text{GEN}}^{\text{foward}} < 150$ $150 \leq mult_{GEN}^{foward} < 200$ 0 1.0 $200 \leq mult_{GEN}^{foward} < 250$ $250 \leq mult_{GEN}^{foward} < 300$ $300 \le mult_{GEN}^{foward} < 350$ $350 \leq \text{mult}_{\text{GEN}}^{\text{foward}} < 400$ $400 \leq mult_{GEN}^{foward} < 1000$ 0.5 0.0.0 0.0_{c} 0.0 2.5 3.5 3.0 4) 2 p_{_} (GeV/c) η

Efficiency drops at high multiplicity & high eta

 $0 \leq \text{mult}_{GEN}^{\text{foward}} < 50$

Ο

Tracking performance – AuAu

1.0

0.5

0.0 2.5 ᠆ᡣᢕ᠊ᠬ

3.0

Fake = (RECO QA<95)/(RECO)

 $0 \le mult_{GFN}^{foward} < 50$ Ο $50 \leq \text{mult}_{\text{GEN}}^{\text{foward}} < 100$ $100 \le \text{mult}_{\text{GEN}}^{\text{foward}} < 150$ $150 \leq \text{mult}_{\text{GEN}}^{\text{foward}} < 200$ O $200 \leq mult_{GEN}^{foward} < 250$ $250 \leq mult_{GEN}^{foward} < 300$ $300 \le mult_{GEN}^{foward} < 350$ $350 \leq mult_{GEN}^{foward} < 400$ $400 \leq mult_{GEN}^{foward} < 1000$

 $p_{_{_{}}}$ (GeV/c)

2

Efficiency drops at high multiplicity & high eta Fake rate increase at high multiplicity & high eta/pt

4)

3.5

η

Tracking performance – AuAu

1.0

0.5

0.0 2.5

3.0

Fake = (RECO QA<95)/(RECO)

 $0 \le mult_{GEN}^{foward} < 50$ Ο $50 \leq \text{mult}_{\text{GEN}}^{\text{foward}} < 100$ $100 \le \text{mult}_{\text{GEN}}^{\text{foward}} < 150$ $150 \leq \text{mult}_{\text{GEN}}^{\text{foward}} < 200$ $200 \leq mult_{GEN}^{foward} < 250$ $250 \leq mult_{GEN}^{foward} < 300$ $300 \leq mult_{GEN}^{foward} < 350$ $350 \leq \text{mult}_{\text{GEN}}^{\text{foward}} < 400$ $400 \le mult_{GEN}^{foward} < 1000$

2

p_{_} (GeV/c)

Efficiency drops at high multiplicity & high eta Fake rate increase at high multiplicity & high eta/pt Ways to improve?

4)

3.5

η

Zhenyu Chen - QCD Weihai 2019

sTGC ghost hits

sTGC ghost hits

sTGC ghost hits

Ghost hits increase as N²!

Large impact on track reconstruction at high occupancy

Diagonal strip

Add diagonal strips with 3.2mm width Add **6,992** channels # channel each chamber <= 512

sTGC ghost hits rejection

Significant reduction of ghost hits

Significant improvement of fake rate

Significant improvement of efficiency for peripheral & mid-central

No big improvement for pT resolution Significant improvement for wrong-pT tracks

Significant improvement for charge mis-ID

New Tracking Algorithm

New tracking algorithm

Based on iterative tracking and Cellular Automaton (CA) Only sTGC hits used and no track fitting at this moment

Credit: James Brandenburg

New tracking algorithm

Good efficiency for track candidates Remain to see after final track fitting

New tracking algorithm

Known issues and future work

sTGC cluster size

Overlapping clusters harm detector resolution & ghost rejection Cluster shape depends on gas & voltage - simulation on the way

Silicon hits for tracking

Silicon hit reconstruction in R direction might confuse CA One solution is to use sTGC only for track seeds Then propagate to silicon with Kalman filter

Summary

- New geometry has been implemented for FTS simulation
- Performance in PP meet Cold QCD program requirement
- Performance in AuAu plagued by ghost hits
 - Ghost rejection design with diagonal strips can significantly improve the situation
- Indication of room for improvement in tracking algorithm
- Known issues and future work
 - Impact of sTGC cluster size
 - Optimal way to use silicon hits in tracking

Back up

- MBRASICS of building - now competitive

- Rings (x2)
- *T-boards* (x12)
- Wedges (x12)
 - Outer wedges
 - Outer support
 - Outer silicons
 - Outer chips
 - Cooling tube
 - Outer hybrid
 - Inner wedge
 - Inner suport
 - Inner silicon
 - Inner chips
 - Inner hybrid

3

The new sTGC acceptance

The hole results in larger acceptance loss in ϕ at larger eta

The new sTGC acceptance

