Workshop on

ebo Tand (USTC)

QCD Physics & Study of the QCD Phase Diagram and New-type Topologic Effect *Jul. 17 – 25, 2019, Weihai, China*

NICA-MPD ETOF: Physics Opportunities and Conceptual Design

Zebo Tang (唐泽波)

State Key Lab. of Particle Detection & Electronics University of Science and Technology of China (USTC)

July 23, 2019, Weihai, Shandong

NICA Physics with MPD (and BM@N)

Physics goals:

- Onset of QGP
- 1st order phase transition
- Search for critical end point
- Chiral phase transition

Systematic study of pp, pA and AA

- Bulk properties, EOS
 - particle yields & spectra, femtoscopy, flow

Search for QCD Critical Point

- event-by-event fluctuations & correlations

Onset of phase transition:

- deconfinement (QGP thermal radiation)
- in-medium modification of hadron properties: $\rho, \omega, \phi \rightarrow e+e-$ and continuum at $m < 3 \text{ GeV/c}^2$
- Enhanced strangeness production
- Chiral Magnetic (Vortical) effect
 - Λ polarization
- Strangeness in nuclear matter
 hypernuclei

Multi-Purpose Detector (MPD)

Stage 1: TPC, TOF, ECal, FHCal and FD

- 9 m long, 6m diameter
- Low material budget
- Good tracking and PID
- Tracking (TPC): $|\eta| < 1.2, 2\pi$ in azimuth
- PID (TOF, TPC, ECAL): π, K, p, d, t, ..., e, γ
- Event characterization (FHCAL): centrality & event plane

Stage 2: IT and Endcaps = (tracker, TOF, ECal)

TDR: http://nica.jinr.ru/files/mpd_tdr.htm

NICA Milestones

- 2018 start of BM@N experiment
- 2018-2019 Booster commissioning
- **2019 MPD** magnet commissioning
- 2019 start of MPD detectors assembly
- **2020** completion of civil constructions (**b. 17**)
- 2020 MPD commissioning (Stage I)
- **2021 Collider** commissioning
- 2023 MPD commissioning (Stage II)
- 2025 SPD commissioning (Stage I)

From Kekelize

MPD Performances at Barrel (Stage I)

July 23, 2019, Weihai, Shandong

Benefits of Forward PID Detector

- Increase acceptance for identified particle measurements
 - Especially for 2,3-body decays
- Enlarge η coverage/gap for correlation studies
- Unique physics opportunities at forward-rapidity

Forward is Different

- Explore different μ_B at different rapidity
- Possible mixture of different phases at forward rapidity due to non-uniform compression *M. Gyulassy and L. P. Csernai, NPA460,723(1986)*

Energy Dependent Directed Flow

- v₁ slope of identified particles
- Closely related to EOS
- Non-monotonic dependence for net-baryons

coverage of v_1 measurement

Critical Point Search

- Higher moments of conserved quantities is a unique tool for critical point search
- Need higher precision and lower beam energy

Forward PID detectors: Enhance fluctuation signal for net-proton, net-kaon etc. Provides cleaner and more

significant indication of critical behavior

Energy Dependence of \Lambda Polarization

Plot from Takafumi Niida

Significant global polarization observed at RHIC BES-I

Clear increase trend with decreasing energy

HADES results consistent with zero

Large polarization at NICA top energy

Turning off at NICA energies?

Rapidity Dependence of Polarization

Measurement of rapidity dependence helps to disentangle models

and private communication

Dilepton Measurement at Forward

- In-medium modification of ρ: search for chiral symmetry restoration
- Low-mass-range (LMR) dilepton yields depend on temperature, lifetime and baryon-density
- Forward measurements provides for independent observable to study the baryon-density dependence

Challenges of Forward PID Detector

Challenge of eTOF

July 23, 2019, Weihai, Shandong

Requirement of eTOF

High timing resolution eTOF system: 40-50 ps?

• High timing resolution eTOF detector (MRPC)

<~ 30 ps? (intrinsic)

• High timing resolution electronics

10-15 ps

• High timing resolution T0 with low material budget

<~30 ps?

High Timing Resolution MRPC

eTOF of Beijing Spectrometer

24-gaps MRPC Shaohui An et. al, NIMA594, 39 (2008)

Time_{diff} [ps]

Recent Developments

20-gaps MRPC with thin glass Z. Liu et. al, NIMA908, 383 (2018)

2x10 160µm-gaps, NINO+WaveCatcher

High Timing Resolution Electronics

Lei Zhao from USTC

Digitizer Based on DRS4

Forward Fast Detector (FFD) Detector

Low-material T0 Detector

Detect only charged particle (mainly proton) in forward region?

Multiplicity on T0 Detector

Trigger Efficiency

- Requires coincidence of the detectors at east and west
- Assuming 50% detection acceptance and efficiency
- 100% trigger efficiency except in central collisions at sqrt(s_{NN})=4 GeV

Time-of-Flight Distribution

Zebo Tang (USTC)

July 23, 2019, Weihai, Shandong

Time Distribution of the First Arrival

Distribution of Average Time

July 23, 2019, Weihai, Shandong

Intrinsic Timing Resolution

- <30 ps in most of the cases
- Problem in central collisions at low energy Mixture of produced particle and transported particles Requirement at low energy is lower

T0 from TOF Itself

ALI-PERF-143047

T0 from bTOF (+ eTOF)

Complementary to T0 detector

```
Especially for (semi-)central collisions
```

With 2 or more tracks, T0 can be obtained directly from TOF itself ALICE TOF can obtain:

- < 30 ps with 10 tracks
- < 10 ps with 150 tracks
 - < 5 ps with 600 tracks

Technical Options for T0 Detector

- Plastic scintillator + MCP-PMT
- Plastic scintillator + SiPM

128 x 2

• Low Gain Avalanche Detector (LGAD)

Is Plastic Scintillator Fast Enough?

Properties	BC-400	BC-404	BC-408	BC-412	BC-416
Light Output, % Anthracene	65	68	64	60	38
Rise Time, ns	0.9	0.7	0.9	1.0	_
Decay Time, ns	2.4	1.8	2.1	3.3	4.0
Pulse Width, FWHM, ns	2.7	2.2	~2.5	4.2	5.3
Light Attenuation Length, cm*	160	140	210	210	210
Wavelength of Max. Emission, nm	423	408	425	434	434
No. of H Atoms per cm ³ , (x10 ²²)	5.23	5.21	5.23	5.23	5.25
No. of C Atoms per cm ³ , (x10 ²²)	4.74	4.74	4.74	4.74	4.73
Ratio H:C Atoms	1.103	1.100	1.104	1.104	1.110
No. of Electrons per cm ³ , (x10 ²³)	3.37	3.37	3.37	3.37	3.37
Principal uses/applications	general purpose	fast counting	TOF counters, large area	large area	large area economy

*The typical 1/e attenuation length of a 1 x 20 x 200 cm cast sheet with edges polished as measured with a bialkali photomultiplier tube coupled to one end

Cosmic Ray Test Results

Amplitude ~ 600 p.e.

Can be Better

	BC-418	BC-420	BC-422	BC404
Scintillation Properties				
Light Output, %Anthracene	67	64	55	68
Rise Time, ns	0.5	0.5	0.35	0.7
Decay Time (ns)	1.4	1.5	1.6	1.8
Pulse Width, FWHM, ns	1.2	1.3	1.3	2.2
Wavelength of Max. Emission, nm	391	391	370	408
Light Attenuation Length, cm*	NA**	140	NA**	140
Bulk Light Attenuation Length, cm	100	110	8	160
Atomic Composition				
No. H Atoms per cc (x10 ²²)	5.21	5.21	5.19	5.21
No. C Atoms per cc (x10 ²²)	4.74	4.74	4.71	4.74
Ratio H:C Atoms	1.100	1.100	1.102	1.100
No. of Electrons per cc (x1023)	3.37	3.37	3.34	3.37

Weight % Benzophenone

BC422Q	None*	0.5	1.0	2.0	3.0	5.0
Scintillation Properties						
Light Output, %Anthracene	55	19	11	5	4	3
Rise Time, ps	350	110	105	100	100	100
Decay Time (ns)	1.6	0.7	0.7	0.7	0.7	0.7
Pulse Width, FWHM, ps	1300	360	290	260	240	220
*BC-422						

Inquiring

MCP-PMT and SiPM

Hamamatsu R10754-07-M16 27.6mm x 27.6mm (23mm x 23 mm) Photonis XP85012 59mm x 59mm (53mm x 53 mm) Hamamatsu S14161-6050HS-04 25mm x 25mm

4 tubes on hand

Inquiring

Inquiring

Low Gain Avalanche Detectors (LGAD)

Very active R&D at USTC, IHEP etc recently

Summary

- Plenty of physics opportunities with forward PID detector at NICA-MPD
- eTOF is a good choice of forward PID detector
- Excellent timing resolution is required for eTOF system
- High timing resolution MRPC + fast electronics looks promising
- Low-material T0 detector may also needed to replace current FFD, R&D planed

NICA-MPD Physics Working Groups

- PWG1 "Global Observables"
 - Grigory Feofilov from SPSU, St. Petersburg
 - Alexander Ivashkin from INR RAS, Moscow
- PWG2 "Spectra of light flavor and hypernuclei"
 - Vadim Kolesnikov from JINR
 - Xainglei Zhu from Tsinghua University, Beijing
- PWG3 "Correlations and Fluctuations"
 - Konstantin Mikhaylov from NRC "Kurchatov Institute" ITEP, Moscow, and JINR
 - Arkadiy Taranenko from MEPhI, Moscow
- PWG4 "Electromagnetic Probes"
 - Victor Riabov from PNPI, Gatchina
 - Chi Yang from Shandong University, Qingdao
- PWG5 "Heavy Flavor"
 - Wangmei Zha from USTC, Hefei
 - Alexander Zinchenko from JINR

Zebo Tang (USTC)

Lambda Polarization at Forward

Change of rapidity affect the global polarization

July 23, 2019, Weihai, Shandong