Search for the QCD Critical Point in High Energy Heavy-ion Collisions

Xiaofeng Luo (罗晓峰)

Central China Normal University

Water

Dominated by EM interactions

What will happen, if we **Heat matter to trillion (10¹²) degree ?**

Xiaofeng Luo

E. Fermi: "Notes on Thermodynamics and Statistics" (1953) 70 - Matter in unusual conditions 70 a 25 12 Electron proton gas 10 Non deg. electron gas Colotin Degenerate electron gas 8 10 12 7 14 10 to 14 12 to 28 30 32 kg/ Start from ordinary condensed matter with a) Increase pressure at T 2 1000 Until deg. electron energies exceeds 20 eV-Condition $\overline{w} = \frac{3}{40} \left(\frac{6}{\pi}\right)^{\frac{3}{2}} \frac{h}{n^{2/3}} p = \frac{2}{3} \overline{w} n$ E. Fermi W= 3.5×10-27 n213= 3.2×10-11 n ≈ 33× 10²4 p= -2 3.2×10⁻¹¹× 80× 10²4 ≈ 2×10¹³ ~ 2×10 atu As pressure increases beyond this point $\approx 2 \times 10^{7} atm$ $p = 3.6 \times 10^{-27} n^{2/3} m \times \frac{2}{3} = 2.4 \times 10^{-27} n^{5/3}$ $m = 6 \times 10^{23} \frac{p}{7} Z$ $p = 10^{13.01} \left(\frac{0Z}{A}\right)^{5/3} \approx 3.2 \times 10^{12} p^{5/3}$

QCD Phase Diagram (2013)

Very rich physics at high baryon density region.

High Temperature : Early Universe
 High Baryon density : Neutron star etc.

1. 1st order Phase Transition ? 2. Critical point ?

Relativistic Heavy-Ion Collisions

Relativistic heavy-ion collisions are a unique tool to create and study hot QCD matter and its phase transition under controlled conditions

Xiaofeng Luo

Location of CEP: Theoretical Prediction

Lattice QCD:
 1): Fodor&Katz, JHEP 0404,050 (2004):
 (μ^E_B, T_E)= (360, 162) MeV (Reweighting)

2): Gavai&Gupta, NPA 904, 883c (2013) (μ^{E}_{B} , T_{E})= (279, 155) MeV (Taylor Expansion)

3): F. Karsch et al. NPA 956, 352 (2016). (μ^{E}_{B} / T_E >2)

> Dyson-Schwinger Equation (DSE):

1): Y. X. Liu, et al., PRD90, 076006 (2014); 94, 076009 (2016). PRL $(\mu^{E}_{B}, T^{E}) = (372, 129)$; (262.3, 126.3) MeV (330, 128), L=2fm (450, 109)

2): Hong-shi Zong et al., JHEP 07, 014 (2014). (μ^{E}_{B}, T_{E})= (405, 127) MeV

3): C. S. Fischer et al., PRD90, 034022 (2014). $(\mu^{E}{}_{B}, T^{E})$ = (504, 115) MeV

- ➤ Functional Renormalization Group (FRG): $(\mu^{E}{}_{B}, T^{E}) = (635, 107) ; Weijie Fu et al.$ $(\mu^{E}{}_{B}, T^{E}) = (780, 55); Defu Hou et al. PRD96 (2017)$
- > **PNJL**, $(\mu^{E}_{B}, T^{E}) = (720, 90)$, Mei Huang, et al. EPJC 79, 245 (2019).

Exploring the QCD Phase Structure

Xiaofeng Luo

STAR Detector System

RHIC Beam Energy Scan Phase I (2010-2017)

Year	Events (10 ⁶)	*μ _Β (MeV)	*Т _{сн} (MeV)
2010	238	25	166
2010	45	73	165
2017	1200	83	165
2010	86	112	164
2011	32	156	162
2011	15	206	160
2014	13	264	156
2010	7	316	152
2010	3	422	140
	Year 2010 2010 2017 2010 2011 2014 2010 2010	YearEvents (10°)2010238201045201012002011322011322014132010720103	YearEvents (10°)*μ (ΜεV)2010238252010457320171200832010861122011321562011152062014132642010731620103422

*(μ_B , T_{CH}) : J. Cleymans et al., PRC 73, 034905 (2006)

Access the QCD phase diagram: vary collision energies/centralities. RHIC BES-I : 20 < μ_B < 420 MeV

Search for the QCD critical point

In the vicinity of critical point

Large density fluctuations and long range corr.

E-by-E conserved charge (B, Q, S) fluctuations Baryon clustering: light nuclei production

Experimental Signatures: Non-monotonic variation as a function of collision energy.

Higher Moments of Conserved Quantities

Cumulants of the event-by-event net-proton, net-charge and net-kaon distributions.

> Net-Proton: $N_p - N_{\overline{p}}$ (Net-Baryon, B)

> Net-Charge:
$$N_{Q^+} - N_{Q^-}$$

> Net-Kaon: (Net-Strangeness, S)

$$N_{K^{+}} - N_{K^{-}}$$

$$\frac{C_{4,q}}{C_{2,q}} = \kappa \sigma^2 \propto \xi^5$$
$$\frac{C_{3,q}}{C_{2,q}} = S\sigma \propto \xi^{9/4}$$

$$C_{2,q} \propto \xi^2, C_{3,q} \propto \xi^{4.5}, C_{4,q} \propto \xi^7$$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009). M.Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009).

Xiaofeng Luo

Data Analysis Methods

Analysis Methods used in the STAR coll.

1. Statistical errors estimation : Delta theorem or bootstrap

- 2. Avoid auto-correlation effects: New centrality definition.
- 3. Suppress volume fluctuation: Centrality bin width correction
- 4. Finite detector efficiency correction (binomial response func.)

Review Article : X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017).

X.Luo, J. Phys. G 39, 025008 (2012); A. Bzdak and V. Koch, PRC86, 044904 (2012); X.Luo, et al. J. Phys. G40,105104(2013); X.Luo, Phys. Rev. C 91, 034907 (2015); A . Bzdak and V. Koch, PRC91, 027901 (2015). T. Nonaka et al., PRC95, 064912 (2017). M. Kitazawa and X. Luo, PRC96, 024910 (2017). X. Luo, T. Nonaka, PRC99, 044917 (2019);

Statistical Errors Estimation and Properties

X. Luo, J. Phys. G 39, 025008 (2012);
X. Luo, Phys. Rev. C 91, 034907 (2015);
X. Luo, T. Nonaka, Phys. Rev. C 99, 044917 (2019);

Statistical errors strongly depend on the : Width of the measured distributions (σ) and the detector efficiency (ϵ).

Xiaofeng Luo

BES-I (2010-2014) : Net-Particle Fluctuation Measurements

Net-Charge

Net-Proton

Phys. Rev. Lett. 105, 022302 (2010). Phys Phys. Rev. Lett. 112, 032302 (2014).

Phys. Rev. Lett. 113 092301 (2014).

Phys. Lett. B 785, 551 (2018).

Net-Kaon

Net-Proton :Both 3rd- and 4th-order fluctuations have their minima at √s = 19.6 GeV.
 Net-charge and Net-kaon: large statistical errors, need more statistics.

Xiaofeng Luo

Extend p_T coverage for (Anti-) Proton

▷ p_T region can be extended up to 2.0 GeV by using TOF as well as TPC.
 ▷ (Anti)proton statistics is doubled with respect to the published results.

Xiaofeng Luo

(Anti-) Proton Acceptance and Efficiencies

Au + Au Collisions at RHIC

> Efficiency : Proton> Anti-proton, Low p_T > High p_T , low energy > High Energy, Peripheral > Central

Xiaofeng Luo

Results: Mean Net-p, p and pbar

- ➢ Mean Net-proton, proton and anti-proton number increase with <N_{part}>
- Net-proton number is dominated by protons at low energies and increases when energy decreases. (Interplay between baryon stopping and pair production)

Higher Order Cumulants for Net-p, p, pbar

In general, cumulants of Net-p, p and pbar are increasing with <N_{part}>.
 The cumulants of net-proton distributions closely follow the proton cumulants when the colliding energy is decreasing.

Xiaofeng Luo

Fourth Order Net-Proton Fluctuations

New data set : 54.4 GeV (2017)

- Transport model (no CP physics) results show monotonic energy dependence: dominated by baryon number conservations
- > Mean field potential can not explain the enhancement of $\kappa\sigma^2$ at low energy.

Z. Feckova, et al., PRC92, 064908(2015). J. Xu, et. al., PRC94, 024901(2016). X. Luo et al., NPA931, 808(14), P.K. Netrakanti et al. 1405.4617, NPA947, 248(2016), P. Garg et al. PLB 726, 691(2013). S. He, et. al., PLB762, 296 (2016). S. He, X. Luo, PLB 774, 623 (2017).

Xiaofeng Luo

Short Paper : Nature Physics

Long Paper : PRC

Paper draft are ready. Going through collaboration process

The two papers will be submitted to the journal simultaneously.

Near CP or 1st order phase transition, baryon density fluctuation become large.

Light nuclei production

(Baryon Clustering)

Coalescence + nucleon density flu.

$$egin{aligned} N_{
m d} &= rac{3}{2^{1/2}} \left(rac{2\pi}{m_0 T_{
m eff}}
ight)^{3/2} N_p \langle n
angle (1+lpha\Delta n), \ N_{
m ^3H} &= rac{3^{3/2}}{4} \left(rac{2\pi}{m_0 T_{
m eff}}
ight)^3 N_p \langle n
angle^2 [1+(1+2lpha)\Delta n], \end{aligned}$$

$$N_t \cdot N_p / N_d^2 \approx g(1 + \Delta n)$$

Neutron density fluctuations:

$$\Delta n = \langle (\delta n)^2 \rangle / \langle n \rangle^2$$

K. J. Sun, L. W. Chen, C. M. Ko, Z. Xu, Phys. Lett. B774, 103 (2017).
K. J. Sun, L. W. Chen, C. M. Ko, J. Pu, Z. Xu, Phys. Lett. B781, 499 (2018).
Edward Shuryak and Juan M. Torres-Rincon, arXiv:1805.04444

Xiaofeng Luo

Deuteron and triton production from BES-I at RHIC

Xiaofeng Luo

Nucleon Density Fluctuations

• The particle ratios of light nuclei is sensitive to the **nucleon density fluctuation** at kinetic freeze-out. This conclusion is based on **coalescence model**.

$$N_{d} = \frac{3}{2^{\frac{1}{2}}} \left(\frac{2\pi}{m_{0}T_{eff}} \right)^{3/2} N_{p} \langle n \rangle (1 + \alpha \Delta n) \qquad N_{t} = \frac{3^{3/2}}{4} \left(\frac{2\pi}{m_{0}T_{eff}} \right)^{3} N_{p} \langle n \rangle^{2} [1 + (1 + 2\alpha)\Delta n]$$

$$N_{t} = \frac{3^{3/2}}{4} \left(\frac{2\pi}{m_{0}T_{eff}} \right)^{3} N_{p} \langle n \rangle^{2} [1 + (1 + 2\alpha)\Delta n]$$

$$N_{t} = \frac{3^{3/2}}{4} \left(\frac{2\pi}{m_{0}T_{eff}} \right)^{3} N_{p} \langle n \rangle^{2} [1 + (1 + 2\alpha)\Delta n]$$

$$\frac{\langle (\delta n)^{2} \rangle}{\langle n \rangle^{2}} = \Delta n = \frac{1}{g} \frac{N_{t}N_{p}}{N_{d}^{2}} - 1$$

$$N_{t} : \text{Triton yield, } N_{d} : \text{Deuteron yield}$$

$$N_{p} : \text{Proton yield}$$

200 300

100

NN 2018

Neutron density fluctuation Δn shows a

non-monotonic behavior on collision energy.

Peak around 20 GeV.

K. J. Sun, L. W. Chen, C. M. Ko, Z. Xu, Phys. Lett. B774, 103 (2017). K. J. Sun, L. W. Chen, C. M. Ko, J. Pu, Z. Xu, Phys. Lett. B781, 499 (2018). Edward Shuryak and Juan M. Torres-Rincon, NPA 982, 831 (2019)

0

STAR Preliminary

20

Dingwei Zhang,

30 40

 $\sqrt{s_{NN}}$ (GeV)

5 6 7 8 10

Light Nuclei Yield Ratio Vs. Thermal model

At RHIC energies, thermal model can describe the d/p ratios, but can not describe the t/p ratios.

Xiaofeng Luo

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018).

Xiaofeng Luo

Statistical thermal fit including light nuclei

Data are taken from : STAR, PRC 96,044904 (2017). (BES light hadrons) STAR, PRC 99, 064905 (2019) (BES deuteron production) STAR, arXiv:1906.03732, submitted to PRC (BES strangeness)

Xiaofeng Luo

Chemical freeze-out T_{ch} Vs. μ_B

Cleymans: J. Cleymans et al., PRC 73, 034905 (2006) Andronic: A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018).

- Obtain lower chemical freeze-out temperature if we include the deuteron yield into the fitting.
- ➢ At 200 GeV, T_{ch} ~ 155 MeV.

QCD Critical Point Focusing Effects

QCD critical point focusing effect : critical point will serve as an attractor of the trajectory evolution in the $T - \mu_B$ plane. M. Asakawa, S. A. Bass B. Muller, C. Nonaka PRL 101, 122302 (2008)

N. Yu, D. Zhang, and X. Luo arXiv:1812.04291

The particle emitting probability along the trajectory is assumed to be proportional to the particle density calculated from the thermal model with corresponding T and μ_B .

• $\beta_T - t$ distribution is from UrQMD central Au+Au collision at $\sqrt{s_{NN}} = 19.6$ GeV.

- > The \bar{p}/p , \bar{d}/d , and ³He/He decrease with increasing β_T with QCP focusing effect.
 - This behavior is more easier to be observed for heavier particles

Can we observe the QCP focusing effects in HIC experiment ?

N. Yu, D. Zhang, and X. Luo arXiv:1812.04291

Transverse velocity dependence of dbar/d ratio

We indeed observe anomalous for dbar/d ratio at 19.6 GeV measured by STAR. Will make more precise measurements in RHIC-BES-II.

Xiaofeng Luo

BES-II at RHIC (2019-2021)

√S _{NN} (GeV)	Events (10 ⁶)	BES II / BES I
19.6	400	2019 / 2011
14.5	300	2019 / 2014
11.5	230	2020 / 2010
9.2	160	2020 / 2008
7.7	100	2021 / 2010
17.1	250	2021

- BES-II : 10-20 times higher statistics than BES-I.
- > FIX-target mode : $\sqrt{s_{NN}} = 3-7.7 \text{ GeV} (2018-2020).$
- iTPC, ETOF, EPD upgrade completed.

Enlarge Acceptance : η coverage from 1.0 to 1.5
 Improve dE/dx and forward PID
 Improve centrality/event plane determination

Explore the QCD phase structure with Beam Energy Scan

- Fourth order net-proton fluctuations (C₄/C₂) in central Au+Au collisions shows non-monotonic energy dependence, with a minimum around 20-30 GeV.
- Neutron density fluctuations in 0-10% central Au+Au collisions shows non-monotonic energy dependence with a peak around 20-30 GeV.
- bar/d vs. beta_t show anomaly around 19.6 GeV.
- > In BES-II, we can study the QCD phase structure with high precision at $\sqrt{s_{NN}} = 7.7-19.6$ GeV (collider mode) and 3-7.7 GeV (Fix-target mode)

Stay tuned for RHIC BES-II (2019-2021) !

QUARK MATTER 2019

Wuhan, China 4-9 November

Search

Workshop on the QCD Phase Structure at High Baryon Density Region

12-14 November 2019 Central China Normal University Asia/Shanghai timezone

๚๛๛

Overview Scientific Programme Timetable Author List Participant List Registration

Registration Form

Travel Information

Support

Maya@mail.ccnu.edu.

6 +86-27-67867975

In this workshop, we will focus on discussing the physics of QCD phase structure at high baryon density. It will cover recent experimental and theoretical developments and the perspective for future low energy heavy-ion collision experiments.

No registration fee is collected.

Topics:

1. Search for the QCD critical point and Beam Energy Scan

2. Equation of state at high baryon density

3. Future low energy heavy-ion collision experiments

Local Organizing Committee:

Xiaofeng Luo (CCNU), Co-chair Nu Xu (CCNU/IMP/LBNL), Co-chair Feng Liu (CCNU) Shusu Shi (CCNU) Yaping Wang (CCNU)

QM Satellite Meeting, Nov. 12-14, 2019

Xiaofeng Luo

Truth buried in the sands. Need to dig it out.

Thank you !

Xiaofeng Luo

2019-2021: BES II at RHIC

√S _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	μ _B (MeV)	T _{CH} (MeV)
200	238	2010	25	166
62.4	45	2010	73	165
54.4	1000	2017	90	165
39	86	2010	112	164
27	32 (1000)	2011(2018)	156	162
19.6	400 / 36	2019 / 2011	206	160
14.5	300 / 13	2019 / 2014	264	156
11.5	230 / 7	2020 / 2010	315	152
9.2	160 / 0.3	2020 / 2008	355	140
7.7	100 / 3	2021 / 2010	420	140
17.1	250	2021	235	

Precise mapping the QCD phase diagram $200 < \mu_B < 420 MeV$

Xiaofeng Luo