

QCD phase structure from Lattice QCD

Heng-Tong Ding (丁亨通) Central China Normal University

workshop on

QCD Physics & Study of the QCD Phase Diagram and New-type Topologic Effect

QCD物理暨国家自然科学基金重大项目交流会

17-25 July, 2019@Shangdong University

Outline: QCD phase structure

HTD, F. Karsch, S. Mukherjee, arXiv: 1504.05274 Int.J.Mod.Phys. E24 (2015) no.10, 1530007 $\frac{1}{2}$ Chiral crossover at zero and small μ_B

A. Bazavov, HTD, P. Hegde et al. [HotQCD], Phys. Lett. B795 (2019) 15 (arXiv:1812.08235)

Chiral phase transition temperature

HTD, P. Hegde, O. Kaczmarek et al. [HotQCD], arXiv:1903.04801, PRL in press

QCD transition in external B

Xiao-Dan Wang (汪晓丹) et al., work in progress & arXiv: 1904.01276

Crossover transition temperature T_{pc} in the real world

Crossover nature of the transition

Chiral phase transition: most likely 2nd order, 3d O(4) Ejiri et al., PRD 80(2009)094505, HTD et al. [HotQCD], arXiv:1903.04801...

A well-defined chiral crossover transition temperature: based on scaling properties of QCD (HTD, P. Hegde, O. Kaczmarek et al. (HotQCD], arXiv:1903.04801, PRL in press

chiral condensate: $\Sigma(T, \mu_B) \sim m^{1/\delta} f_G$ chiral susceptibility: $\chi^{\Sigma}(T, \mu_B) \sim m^{1/\delta - 1} f_{\chi}$

chiral condensate: $\Sigma(T, \mu_B) \sim m^{1/\delta} f_G$ chiral susceptibility: $\chi^{\Sigma}(T, \mu_B) \sim m^{1/\delta - 1} f_{\chi}$ Taylor expansions:

$$\Sigma(T,\mu_X) = \sum_{n=0}^{\infty} \frac{C_{2n}^{\Sigma}(T)}{(2n)!} \left(\frac{\mu_X}{T}\right)^{2n} \qquad \chi(T,\mu_X) = \sum_{n=0}^{\infty} \frac{C_{2n}^{\chi}(T)}{(2n)!} \left(\frac{\mu_X}{T}\right)^{2n}$$

chiral condensate: $\Sigma(T, \mu_B) \sim m^{1/\delta} f_G$ chiral susceptibility: $\chi^{\Sigma}(T, \mu_B) \sim m^{1/\delta - 1} f_{\chi}$ Taylor expansions:

$$\Sigma(T,\mu_X) = \sum_{n=0}^{\infty} \frac{C_{2n}^{\Sigma}(T)}{(2n)!} \left(\frac{\mu_X}{T}\right)^{2n} \qquad \chi(T,\mu_X) = \sum_{n=0}^{\infty} \frac{C_{2n}^{\chi}(T)}{(2n)!} \left(\frac{\mu_X}{T}\right)^{2n}$$

 $\begin{array}{c}
\partial_T \chi^{\Sigma}(T) \\
\partial_T C_0^{\chi}(T) \\
C_2^{\chi}(T)
\end{array} \sim$

$$m^{1/\delta - 1 - 1/\beta\delta} f_{\chi}'(z)$$

$$\frac{\partial_T^2 C_0^{\Sigma}(T)}{\partial_T C_2^{\Sigma}(T)}$$

$$m^{1/\delta - 2/\beta\delta} f_G''(z)$$

chiral condensate: $\Sigma(T, \mu_B) \sim m^{1/\delta} f_G$ chiral susceptibility: $\chi^{\Sigma}(T, \mu_B) \sim m^{1/\delta - 1} f_{\chi}$ Taylor expansions:

Well-defined notation of chiral crossover transition temperature

= 5 conditions to extract Tc: maxima of fx and f'_G

 $\partial_T \chi^{\Sigma}(T) = 0 \qquad \partial_T C_0^{\chi}(T) = 0 \qquad C_2^{\chi}(T) = 0 \qquad \partial_T^2 C_0^{\Sigma}(T) = 0 \qquad \partial_T C_2^{\Sigma}(T) = 0$

m=0: all these susceptibilities diverge at a unique T

m=/=0: non-unique temperatures, crossover

QCD transition with $m_{\pi} = 140$ MeV at $\mu_B = 0$

A. Bazavov, HTD, P. Hegde et al. [HotQCD], Phys. Lett. B795 (2019) 15

Higher precision in the continuum limit: $T_{pc} = 156.5(1.5)MeV$

Previous results: T_{pc} =155(9) MeV, [HotQCD] PRL 113(2014)082001

Order Parameter Susceptibility at $\mu_B = /= 0$

A. Bazavov, HTD, P. Hegde et al. [HotQCD], Phys. Lett. B795 (2019) 15

No indication of a stronger transition at larger μ_B

Crossover, line of constant physics & freeze-out

$$T(\mu_B) = T(0) \left(1 - \kappa_2 \left(\frac{\mu_B}{T}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}\left(\frac{\mu_B}{T}\right)^6 \right)$$

Radius of convergence

Taylor expansion of the pressure: $\frac{P}{T^4} = \sum_{0}^{\infty} \frac{1}{n!} \chi_n^B(T) \left(\frac{\mu_B}{T}\right)^n$ radius of convergence = $\lim_{n \to \infty} r_{2n}^{\chi,a} = \lim_{n \to \infty} r_{2n-2}^{\chi,b}$ $r_{2n}^{\chi,a} = \left|\frac{2n(2n-1)\chi_{2n}^B}{\chi_{2n+2}^B}\right|^{1/2}, \quad r_{2n-2}^{\chi,b} = \left|\frac{(2n)!\chi_2^B}{\chi_{2n}^B}\right|^{1/2n}$

The Radius of Convergence corresponds to a critical point only if all $\chi_n > 0$ for all $n > n_0$

This forces P/T⁴ and $\chi^B_{n,\mu}$ grows monotonically with $\mu_{\rm B}/{\rm T}$

 $(\kappa \sigma^2)_B = \chi^B_{4,\mu} / \chi^B_{2,\mu} > 1$

Otherwise: 1) the ROC does not determine a critical point
 2) Taylor expansion is not applicable near the critical point

A QCD critical point is disfavored at µ_B/T≲ 2 at T≳135 MeV

A. Bazavov, HTD et al., [Bielefeld-BNL-CCNU], Phys.Rev. D95 (2017) no.5, 054504

10/24

QCD phase diagram in the quark mass plane

Columbia plot:

 At physical point: cross over, T_{pc} = 156.5(1.5) MeV HotQCD, arXiv:1812.08235
 N_f=2(+1): U_A(1) remains broken at T_{XSB} JLQCD '13,'14,'15, HotQCD '13,'14
 Critical lines of second order transition Pisarski & Wilczek PRD '84 N_f=2: O(4) universality class Kogut & Sinclair, PRD '06 N_f=3: Ising universality class Schmidt PLB '04,...

Towards the chiral limit:

- $N_{f}=2+1 \text{ QCD}: m_{s}^{tri} ? m_{s}^{phy}$
- Fundamental scale of QCD: chiral T_c^0 ?
- Relation between chiral T_c⁰ and T_{CEP}

QCD Phase Diagram

Towards chiral limit of (2+1)-flavor QCD

This allows us to perform infinite volume, continuum and then chiral extrapolation!

Quark mass and volume dependences of chiral susceptibility

Susceptibility increases as $m_1^{1/\delta-1}$ +const, here $\delta \simeq 4.8$

Peak height of susceptibility slightly changes with Volume

Consistent with a continuous phase transition with O(N) universality class in the chiral limit of m_l

Quark mass and volume dependences of chiral susceptibility

- Susceptibility increases as $m_1^{1/\delta-1}$ +const, here $\delta \simeq 4.8$
- Peak height of susceptibility slightly changes with Volume
- Consistent with a continuous phase transition with O(N) universality class in the chiral limit of m_l

A novel approach to estimate T_c^0

 $\frac{1}{2}$ Estimate of the chiral transition T_c^0

$$\frac{H\chi_M(T_{\delta}, H, L)}{M(T_{\delta}, H, L)} = \frac{1}{\delta} \quad \checkmark \quad \mathsf{Z}(\mathsf{T}_{\delta}) = 0$$

$$\chi_M(T_{60}, H) = 0.6\chi_M^{max} - Z(T_{60}) \simeq 0$$

z_p: peak location of the susceptibility
 z₆₀: location of 60% of peak height from left

Small quark mass dependence

small variations among universality classes

Things need to be taken care of

- Thermodynamic limit
- Continuum limit
- Chiral limit

$$T_X(H,L) = T_c^0 \left(1 + \left(\frac{z_X(z_L)}{z_0}\right) H^{1/\beta\delta} \right) + c_X H^{1-1/\delta+1/\beta\delta}$$

Singular Regular

X=60,δ

Chiral phase transition temperature: $T_c^0 = 132_{-6}^{+3} \text{ MeV}$

HTD, P. Hegde, O. Kaczmarek et al.[HotQCD], arXiv:1903.04801, PRL in press

- \Im T₆₀ and T_{δ} give consistent results
- About 25 MeV lower than Tpc at the physical point!
- Indication of $T_{CEP} \leq 132 \text{ MeV}$

Expansion coefficients of net electric charge fluctuations

 $\frac{1}{2}$ In the scaling regime, two derivatives wrts $\mu_B \propto$ one derivative wrt T

- \Im Irregular sign change seen at T>T_{pc} in χ_{42}^{BQ}
- Irregular sign change expected at T≥ 135 MeV in χ_{62}^{BQ}

More support for $T_{CEP} < T_c^0$

Inverse magnetic catalyses v.s. T_c(B)

Bali et al., JHEP02(2012)044

QCD in the external Magnetic field

Xiao-Dan Wang(汪晓丹), HTD et al, Lattice 2019, Work in progress

from

QCD in the external Magnetic field

Xiao-Dan Wang(汪晓丹), HTD et al, Lattice 2019, Work in progress

eB dependences of neutral pseudo mesons

- Mass decreases as eB grows
- Lighter mesons are more influenced by magnetic field

eB dependences of charged pseudo mesons

Non-monotonic dep. on eB, not observed in quenched QCD

At eB \leq 0.5 GeV² mass of charged particle well described by LLL approximation: $m^2(B) = m^2(B = 0) + (2n + 1)|qB|$

QCD superconductivity induced by magnetic field ?

No rho condensation is observed

Conclusions

Solution of the state of the s

☑ Negative 6th order cumulants, radius of convergence and the low chiral phase transition T suggests that a possible existing critical end point can only be found at $T_{CEP} \leq 135$ MeV

 \mathbf{M} Decreasing of T_{pc} with B may be relevant with the reduction of neutral pion mass. No condensation of rho is found.

谢谢!

Thanks for your attention!

T_{δ}: Infinite V limit \rightarrow continuum limit \rightarrow chiral limit

T_{δ}: Infinite V limit \rightarrow continuum limit \rightarrow chiral limit

T_{δ}: Infinite V limit \rightarrow continuum limit \rightarrow chiral limit

T_{δ}: Infinite V limit \rightarrow chiral limit \rightarrow continuum limit

Joint volume scaling fit with all quark masses

Chiral and continuum limits are Interchangeable

chiral phase transition and universal scaling

Behavior of the free energy close to critical lines

 $f(m,T) = h^{1+1/\delta} f_s(z)$,

z=t/h^{1/βδ}

h: external field, t: reduced temperature, β , δ : universal critical exponents

 $f_s(z)$: universal scaling function, O(N) etc.

Magnetic Equation of State (MEoS):

28/24

Chiral phase transition temperature T_c^0

$$M = -\partial f_s(t,h) / \partial H = h^{1/\delta} f_G(z)$$
$$\chi_M = \partial M / \partial H = \frac{h^{1/\delta}}{H} \frac{1}{\delta} \left(f_G(z) - \frac{z}{\beta} \frac{df_G(z)}{dz} \right)$$

$$H\chi_{\rm M}/M \rightarrow 1/\delta @ T_{\rm c}^0$$

H: m_l/m_s M: chiral condensate χ_M : chiral susceptibility

Consistency of QCD chiral phase transition with O(N) universality class

S.-T. Li(李胜泰), Lattice 2018, A. Lahiri, QM 2018

$$M/\chi_{\rm M} = \frac{m_l - m_l^{critical}}{m_s^{phys}} \frac{f_M}{f_{\chi_{\rm M}}}$$