A workshop on QCD Physics & Study of the QCD Phase Diagram Wei-Hai, July 17-25, 2019

Heavy Flavor Evolution with EM fields and Hot Medium

Baoyi Chen (陈保义)

天津大学 物理系

Collaborators: Biaogang Wu, Xingbo Zhao, Wangmei Zha Pengfei Zhuang, Ralf Rapp, Carsten Greiner

Outline

1. Vector meson photoproduction from EM fields

2. Stochastic Schrodinger equation : (hot medium effect) stochastic potential (open quantum system) charm wave function evolution with SSE, Diffusion coefficient Ds

3. Schrodinger equation for charmonium:

transitions between 1S and 2S states

Different P_T physics

Photoproduction from EM fields

Equivalent Photon Approximation

charges moves at nearly speed of light → produce E-B fields

Strong Lorentz-contracted Electromagnetic field

p_T dependence

Compare the p_T dependence of coherent photoproduction and hadroproduction

> 2.76 TeV forward rapidity 2.5<y<4,

p_T dependence

Coherent photoproduction:Photons interact with entire nucleus, $p_T \sim 1/R_A \sim 0.03 \text{ GeV/c}$ Exp. $< p_T >= 0.055 \text{ GeV/c}$

PRL 116, 222301 (2016)

b=10.2 fm	Hadroproduction $2.5 < y < 4$	photoproduction			
$0 < p_T < 0.04$ GeV/c	0.47×10 ⁻⁵	5.54×10^{-5}			
$0 < p_T < 0.1$	2.4×10 ⁻⁵	15.7×10 ⁻⁵			
$0 < p_T < 0.5$	50×10 ⁻⁵	~16×10 ⁻⁵			
$0 < p_T < 1$	179×10 ⁻⁵		4		
$0 < p_T < 3$	772×10 ⁻⁵				
		m ⁻²)	2		
rom impact parameter b~10 fm to more central					
ollisions, hadroproduction increase significantly.					
$N_{AA}^{J/\psi} = \sigma_{pp}^{J/\psi} \int d^2 x_T T_A(x_T) T_B(x_T - b)$					
At $h \sim R_{\star}$, they are at the same order in nT<0.1 GeV/c					

hadro- and photo- production

Heavy quarks (quarkonium) + light partons (QGP) Produced in the *overlap area*.

 $\mathbf{b} < 2R_A \text{ or } \mathbf{b} \geq 2R_A$

Produced in the entire nucleus surface

 $\gamma A \rightarrow I/\psi A$

J/ψ from EM field

 $N_{\psi}^{\gamma A} \propto \int dw rac{dN_{\gamma}}{dw} \sigma_{\gamma A o J/\psi A} \Gamma_{QGP}^{decay}$ Mainly ingredients: From transport model

• Photon density $\frac{dN_{\gamma}}{dw}$ emitted by one nucleus

$$\frac{dN_{\gamma}}{dw} = n(w) = \frac{1}{\pi w} \int d\vec{x}_T |\vec{E}_T(\vec{r}, w)|^2$$
Photon density
$$= \frac{(Ze)^2}{\pi w} \int_0^\infty \frac{d^2 \vec{k}_T}{(2\pi)^2} [\frac{F((\frac{w}{v\gamma})^2 + k_T^2)}{(\frac{w}{v\gamma})^2 + k_T^2}]^2 \frac{k_T^2}{v^2}$$

Photon-nucleus cross section $\sigma_{\gamma A \rightarrow I/\psi A}$ Widely studied in UPC

$$\sigma(\gamma A \to J/\psi A) = \frac{d\sigma(\gamma A \to J/\psi A)}{dt}|_{t=0} \int_{-t_{min}}^{\infty} |F(t)|_{t=0} \int_{-t_{min}}^{\infty}$$

Nuclear charge form factor is the Fourier transform of Woods-Saxon distribution. For point particle, it's 1

S.R.Klein, J. Nystrand, PRC, 1999 $|^{2}dt$ Physics Roports, G.Baur, et al, 2002

Total J/ψ from EM field + QGP

Total J/ψ from EM field + QGP

Also significant enhancement at N_p ≈ 100 , where $T_0^{QGP} = 2T_c$, similar with T at RHIC 200 GeV Au-Au (most central)

When N_{part} → 0 (b > 2R_A),
hadroproduction → 0, photoproduction → nonzero, R_{AA} → infinity
Baoyi Chen HENPIC 2018.01.18

Photoproduced 2S/1S

SSE and Stochastic potential

Thermal medium effect

Quantum approach (open quantum system):

- -Lindblad equation[Lindblad et al, 1976, ...]-Solid theoretical foundation for open quantum system,
-Evolving density matrices, computationally-intensive,
approx. needed-Schrödinger-Langevin equation
-Originates from Heisenberg-Langevin equation
-Nonlinear in $|\phi\rangle$ Generalized Langevin approachJ. P. Blaizot, et al
 - pNRQCD

J. P. Blaizot, et al X. Yao, B. Muller

- Stochastic Schrodinger equation (our approach)

Can be employed in Spin thermal theory, Bose-Einstein conden. Thermalization process, et al.

Framework of SSE

Heavy quark-Medium interaction

Like QED

• We model the medium with gluon field:

$$H_I = \int d^3 x g \bar{\psi} \gamma^{\mu} \psi A_{\mu}$$

• Take non-relativistic approximation and keep only zeroth component:

$$H_I = \int d^3 x g \bar{\psi} \gamma^0 \psi A_0$$

• A_0 in momentum space

$$A_0(\vec{x}) = \int \frac{d^3 p_g}{(2\pi)^3} \sqrt{\frac{2}{E_{p_g}}} a(\vec{p}) e^{-i\vec{p}\cdot\vec{x}}$$

• Based on Boltzmann distribution: $|a(p_g)|^2 = \rho(p_g) = d_g V e^{-\beta E_g}$, we conjecture

$$a(\vec{p}) = \sqrt{\frac{d_g V}{e^{-\beta E_g}}} e^{-i\theta_{p_x}^r} e^{-i\theta_{p_y}^r} e^{-i\theta_{p_z}^r}$$

where $\theta_{pp'} \equiv \theta_p - \theta_p$, is a random phase with $\theta_{pp'} = -\theta_{p'p}$ (Hermiticity) as $a(-\vec{p}) = a^*(\vec{p})$, $\theta_{-p}^r = -\theta_p^r$

Numerical results show that $A_0(x)^2 s'$ mean value are intensive, not extensive

SSE in momentum space and interaction picture

$$i\frac{d}{dt}\psi(p,t) = \sum_{p'} \sqrt{\frac{d_g V}{e^{\beta E_g}}} e^{i(E_p - E_{p'})t/2} e^{i\theta_{pp'}} e^{\beta(E_{p'} - E_p)/2} \psi(p',t)$$
Square root of
distribution of
gluon field
$$\begin{cases}
\text{"damping" factor: from ensemble average;} \\
\text{weighting transition matrix elements with} \\
\text{number of microscopic states of the medium}
\end{cases}$$

 θ_{pp} , is time-dependent, updating period is a parameter, currently is taken at 1/T.

17

$$E_{p'} - E_p$$
 lead to non-Hermitian Hamiltonian $E_g \sim |E_p - E_{p'}|$

Wave function in momentum space

 $\tau_c = 0.03 \text{ fm}/c, p_c = 0.3 \text{ GeV}, L = 64 \text{fm}/c$

Wave function in spatial space

compare

Our SSE

(1) Equation (interaction picture) $i \frac{d}{dt} |\psi\rangle = V_I^{stochastic} |\psi\rangle$ (2) ingredients

External field A_0 for QGP (with random phase $e^{i\theta}$)

damping factor $e^{-E_p/T}$

(from the information of environment)

Detailed balance

(3) properties of random phase term

Introduce τ_c , p_c for its correlation in momentum and time.

Random phase term satisfies a correlation function (not delta-function)

Other SSE

J.Phys.Condens.Matter, 24(2012) 273201

Properties of noise & Ds

 $\tau_c = 0.03 \text{ fm}/c, p_c = 0.3 \text{ GeV}, L = 64 \text{fm}/c$ T= 0.1 GeV

Based on classical Langevin equation:

 $\frac{dp}{dt} = -\gamma p + f(t) \qquad D_S = \frac{kT}{\gamma m}$

Preliminary: $2 < D_S(2\pi T) < 3$

Charmonium (two-body)

Transitions between charmonia

V.S.

 $c\bar{c}$ evolutions in Bjorken hydro, With only **transition mechanism**.

Transport model With dissociations, No transitions.

Chen, Zhuang, PLB 765 (2017) 323-327

Transitions between charmonia

Baoyi, Xiaojian, Carsten, Ralf, in preparation

Its suppression is mainly due to the internal evolution of wavefunction, Particle inelastic dissociation is now absent.

> P-Pb system: More suitable to study the internal evolutions of ccbar system. Such as 1S-2S transition mechanism

If without Transitions

- Photoproduction from EM fields charmonium photo-production from strong electromagnetic fields and hadro-production
- Stochastic-Schrodinger-Equation (SSE)
 We construct the Stochastic Schrodinger Equation
 (SSE) and stochastic potential to study the wave function evolutions of heavy quark.

SSE can provide a way to include both **particle collision process** and **color screening** in Schrodinger equation for charm and ψ .

Charmonium transition within Schrodinger
 Charmonium (1S, 2S) transitions based on Schrodinger equation are also studied in small systems (p-Pb)

More slides

Photoproduction contribution

and peripheral and semi-central collisions

TABLE I: Information of QGP based on (2+1)D ideal hydrodynamics

• At Np=100,
$$T_0^{QGP} = 2T_c$$

QGP effect important ! Photoproduction important !

Hydro in LHC $\sqrt{s_{NN}} = 2.76$ TeV Pb-Pb, $2.5 < y < 4$						
b(fm)	N_p	$T_0^{ m QGP}/T_c$	$\tau_{\rm f}^{\rm QGP} ~({\rm fm/c})$			
0	406	2.6	7.3			
9	124	2.1	4.2			
9.6	103	2.06	3.9			
10.2	83	1.95	3.5			
10.8	64	1.84	3.1			

J/ψ from electromagnetic field

• Our formula for J/ψ photo-production with QGP effect

$A_0(\vec{x})$ field is intensive

Numerical results show that $A_0(x)^2 s'$ mean value are intensive, not extensive

Compare with master equation

Thermalization process from SSE and master equation of density matrix are diefferent.

Classical Theoretical Models

Boltzmann transport models

Primordial production

Transport two-component model Tsinghua Group:

> Chen, Zhuang, Phys.Lett. B726 (2013) 725-728 Chen, Zhuang, Phys.Lett. B765 (2017) 323-327

TAMU group:

Xingbo, Ralf, Nucl.Phys. A859 (2011) 114-125

Recombination of $\mathbf{c}\overline{\mathbf{c}}$ during QGP expansion $\mathbf{c} + \overline{\mathbf{c}} \leftrightarrow \mathbf{J}/\boldsymbol{\psi} + \mathbf{g}$ dominates in AA

Che-ming Ko, Ralf Rapp, R. L. Thews, P. Braun-Munzinger Jiaxing Zhao, Baoyi Chen

 $N_{J/\psi} \propto N_{N_{c\bar{c}}}^2$

Large uncertainties of (N_{cc̄})
 theoretical calculations and experimental
 data