Polarization and vorticity in the region of the STAR forward upgrade

Isaac Upsal 07/21/19

ONGUNI

Forward upgrade refresher

- Coverage ~ 2.5-4 in pseudorapidity
- Silicon disks and sTGC (tracking)
- ECal and HCal (calorimetry)
- See talks Friday afternoon for details

System angular momentum

- $|L| \sim 10^5 h$ in non-central collisions
- Dissipative processes \rightarrow thermalization of angular momentum, transference to fireball
 - Hydrodynamically this is described by vorticity: $\vec{\omega} \equiv \frac{1}{2}\vec{\nabla} \times \vec{v}$

Hydrodynamic evolution

From a (lumpy) initial state, solve hydro equations:

movies by Bjorn Schenke

$$d_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu,\nu} = \mathbf{e} u^{\mu} u^{\nu} - (p+\Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$
$$u^{\mu} d_{\mu}\Pi = -\frac{1}{\tau_{\Pi}} (\Pi + \zeta \theta) - \frac{1}{2} \Pi \frac{\zeta T}{\tau_{\Pi}} d_{\lambda} \left(\frac{\tau_{\Pi}}{\zeta T} u^{\lambda} \right) \qquad \& \mathbf{m}$$

 $T^{\mu,\nu} - \boldsymbol{\alpha} \boldsymbol{\mu}^{\mu} \boldsymbol{\mu}^{\nu} - (\boldsymbol{\rho} + \boldsymbol{\Pi}) \boldsymbol{\Lambda}^{\mu\nu} + \boldsymbol{\pi}^{\mu\nu}$

any more terms...

System cools & expands → Hadronization & "Freeze-out"

- emitted particles reflect properties of parent fluid cell
 - chemical potentials, thermal & collective velocities
 - In regions of local vorticity spin degrees of freedom are frozen out into particles with net polarization
 - In hydro: Cooper-Frye at freeze-out
 - In transport models: coarse-graining

emitted hadron (color confined)

fluid cell at freeze-out

QGP fluid: colored quarks deconfined

Measuring polarization

- Lambdas are "selfanalyzing"
 - Reveal polarization by preferentially emitting daughter proton in spin direction

As with Polarization \vec{P} follow the distribution: $\frac{dN}{d \Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta^* \right)$ $\alpha = 0.642 \pm 0.013 \quad \text{[measured]}$ $\hat{p}_p^* \text{ is the daughter proton momentum direction$ *in the A frame* $}$ $0 < |\vec{P}| < 1; \quad \vec{P} = \frac{3}{\alpha} \, \overline{\hat{p}_p^*}, \quad P_{AVE} = \frac{8}{\pi \alpha} \, \frac{\langle \sin \left(\Psi_1 - \phi_p^* \right) \rangle}{R_{FP}^{(1)}}$

Measurements

- Positive polarization observed for both Lambda and Anti-Lambda
 - Drops with increasing beam energy
 - HADES and ALICE preliminary null results are out there
- At 200GeV this is ~ a 5σ result utilizing ~1.5B events (2010 + 2011 + 2014)
- Theory describes data very well

Theory comparison (I)

AMPT IC + chiral kinetic approach

8

AMPT

Theory comparison (II)

Yang-Mills flux-tube + PICR ideal hydro

UrQMD IC + vHLLE 3D viscous hydro

Comparison summary

- Clearly a diverse set of calculations can describe the data well, which makes one wonder how much we learn from the comparisons
- We need more granular studies to distinguish model predictions
- First I want to dive into the specifics of a model to get a sense of what constraints these measurements provide

Example model: UrQMD + vHLLE

- To describe the manifestly not-boost-invariant system at low collision energies course-grained UrQMD is used to provide 3D initial conditions
- The model is evolved via 3D viscous (Israel-Stewart) hydrodynamics
- A UrQMD afterburner is run after freezeout, but not for polarization calculations
- Model parameters are chosen so that the model correctly describes basic hadron observables in relativistic heavy ion collisions
 - (pseudo)rapidity distributions
 - $p_{\scriptscriptstyle T}$ distributions and
 - elliptic flow coefficients

Tunable parameters

- Transverse granularity of the initial state: R_{\perp}
- Longitudinal granularity of the initial state: R_{η}
- Shear viscosity to entropy ratio of the fluid medium: η/s
- Particlization energy density $\varepsilon_{\mbox{\tiny sw}}$

Systematic study results

- The model is most sensitive to the parameters pertaining to initial conditions
- At low energies this is *
 the transverse component, but at higher energies the longitudinal component takes over

Forward polarization

- Previous model most sensitive to longitudinal parameter

 → rapidity dependence is a natural place to look for
 model discrepancy
- Typically we expect forward physics to mimic lower collision-energy physics (\rightarrow increase in polarization)
- Complementary goals to FWD
 - flow measurements (T dependence of η/s, decouple initial from final state effects)
 - nuclear-PDF measurements

FWD angular momentum

• The angular momentum (per parton) increases with rapidity $J_y(\hbar)$ $J_y(\hbar)$ per parton

arXiv:1712.02677

FWD prediction (I)

- AMPT and chiral kinetic approach predict polarization will fall for forward Lambdas
- Both polarization signals clearly fall to zero inside the acceptance of the forward upgrade

FWD prediction (II)

- UrQMD + vHLLE predicts similar fall of polarization with rapidity
 - Note: negative S^y is positive polarization
- Drops slower than AMPT
- Authors suspect ICs may not be valid this far forward

S¹, Au+Au at 200 GeV, b=11.43 fm

F. Becattini, G. Inghirami, and I. Karpenko ¹⁸ (private communication)

FWD prediction (III)

- Alternate hydro calculation predicts increasing polarization
 - IC: AMPT + HIJING strings w/ finite fluctuating lengths
 - 3D viscous hydro (CLVisc)

Measurement prospects

- In principle calorimeter + momentum from the tracking could provide p + π PID, but early simulations do not look good
 - Waiting for new tracker + cal. simulation to re-investigate
- However:
 - Spin is always oriented along the positive daughter
 - Combinatoric background has little/no signal, other than from Anti-Lambdas
 - Measurement could be performed with tracking alone
 - Note that we now have EPD and iTPC upgrades
- If we match previous statistics
 - ~ 3σ difference between FWD (NULL/increased ≥ 2x increase) and mid-rapidity
 - > 6 σ difference between FWD (NULL) and increased ≥ 2x increase

Related measurements (I)

- Lambda emission angle dependence of polarization might be strongly dependent on rapidity
- f2 is
 proportional to the data fit by a cosine

Related measurements (II)

- Longitudinal polarization
 - v2 velocity gradients \rightarrow vorticity quadrupole (see Takafumi)
- Measure as a function of rapidity

Conclusion

- Lambda polarization modeling is most sensitive to the details of the early time dynamics
- Models describe mid-rapidity data well, but significant tension exists in the forward direction
- Measurements in the STAR forward upgrade may help distinguish models and fix model parameters so we can learn about the initial state of the collision

END

Becattini and Karpenko: IS parameters

$\sqrt{s_{\rm NN}} [{\rm GeV}]$	$ au_0 ~[{ m fm/c}]$	R_{\perp} [fm]	R_{η} [fm]	η/s
7.7	3.2	1.4	0.5	0.2
8.8 (SPS)	2.83	1.4	0.5	0.2
11.5	2.1	1.4	0.5	0.2
17.3 (SPS)	1.42	1.4	0.5	0.15
19.6	1.22	1.4	0.5	0.15
27	1.0	1.2	0.5	0.12
39	0.9*	1.0	0.7	0.08
62.4	0.7^{*}	1.0	0.7	0.08
200	0.4*	1.0	1.0	0.08

25