Study on heavy-flavour and strangeness with ALICE Xiaoming Zhang / 张晓明 **Central China Normal University**

QCD物理暨国家自然科学基金重大项目交流会 17–25 July 2019, Weihai, China

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Open heavy-flavour production

- $\tau_{c/b} \sim 0.01 0.1 \text{ fm/c} < \tau_{QGP} (\sim 0.3 \text{ fm/c})$
- Production cross section calculable with pQCD (m_c , $m_b \gg \Lambda_{QCD}$)
- Experience the entire evolution of the QCD medium probe transport properties of the deconfined medium

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Heavy quarks (charm and beauty): powerful probes of the Quark-Gluon Plasma (QGP)

• Produced in initial hard scatterings (high Q^2) at the early stage of heavy-ion collisions:

Open heavy-flavour production

Nuclear modification factor (R_{AA}): heavy quark in-medium energy loss

- Elastic (radiative) vs. inelastic (collisional) processes
- Color charge (Casimir factor) and mass (eg dead-cone effect) dependence
- Sensitive to the presence of the medium

$$R_{\rm AA}(p_{\rm T}) = \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{< T_{\rm AA} > \mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}} \label{eq:RAA}$$

• $R_{AA} = 1$, if no medium modification

$$\Delta E_{\rm g} > \Delta E_{\rm q} > \Delta E_{\rm c} > \Delta E_{\rm b}$$

 \Rightarrow R_{AA}(light hadron) < R_{AA}(D) < R_{AA}(B) ?

Medium modification of heavy-flavour hadron production

• Hadronization via coalescence may modify the D_{s} + / non-strange D and Λ_{c} / D ratios

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Open heavy-flavour production

- **Azimuthal anisotropy**: Fourier decomposition of particle azimuthal distribution relative to the reacting relation $p_{T,dy}^{d^3\sigma}$ to the reacting relation $p_{T,dy}^{d^3\sigma}$ and $p_{T,dy}^{d^2\sigma}$ and $p_{T,dy}^{d^2\sigma}$
- Elliptic, flow (vs): (second order Fourier coefficient
 - \rightarrow Low and intermediate p_{T} : collective motion and possible heavy-quark thermalization in the QCD medium
 - \rightarrow High p_T : path-length dependence of heavy-quark in-medium energy loss

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Iransport properties of D mesons

- Strong suppression: charm undergone significant interactions in the QGP Indication of $R_{AA}(D_{s}^{+}) > R_{AA}(non-strange D)$: charm hadronization through recombination in medium
- Same v_2 of D_s+ and non-strange D mesons within uncertainties in $p_T > 3$ GeV/c

- Simultaneous description D_s+ and non-strange D R_{AA} and v_2
 - Constrain interplay of coalescence and collisional energy loss + medium flow
 - Charm quark diffusion coefficient at the LHC: $(1.5 - 7) / 2\pi T_c$

Open heavy-flavour energy loss

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

• R_{AA} of D mesons systematically smaller than non-prompt J/ ψ at high p_{T}

Indication of mass-dependent suppression for charm and beauty

• $R_{AA}(D) \sim R_{AA}(\pi) - \text{different parton } p_T$ distribution and fragmentation

RAA(e+

- Hint of a smaller suppression for beauty-decay electrons for $p_T < 6$ GeV/c
- Data is reproduced by models within uncertainties, implementing quark mass dependent energy loss

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Open-beauty elliptic flow

ALI-PREL-319441

• From analysis of 2015 data — can reduce uncertainties with 2018 data

Study on HF and strangeness with ALICE

• $v_2 > 0$ (~3.5 σ effect) for e \leftarrow b in 20-40% centrality

• Similar than $e \leftarrow c, b$

D⁰-tagged jets RAA

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Strong suppression of D⁰-tagged jets in the most 10% central Pb–Pb collisions

- Hint of more suppression of low p_T D⁰-tagged jets than inclusive jets at higher p_{T}
- D⁰-tagged jets: more quark-seeded jets compared to inclusive jets
- Similar suppression of D⁰-jets and D mesons

Direct flow of open charm

- Sensitive to the early time EM fields in the collisions
 - Provide constraint for CME related physics
- Charm dragged by tilted bulk
 - \rightarrow Larger v_1 for D mesons, probe the longitudinal

ALI-PREL-307073

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Hint of positive slope with a significance of 2.7 σ at low p_T

Similar trend observed for charged particles, but different magnitude

Ac production in Pb–Pb collisions

- New $\Lambda_c R_{AA}$ in 2018 Pb–Pb data, similar suppression as D_s^+
- Hint of higher Λ_c / D⁰ ratio in Pb–Pb collisions than small systems

Described by model including both coalescence and fragmentation

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

ALI-PREL-321682

Nore rare probes...

Study of rare probes, non-prompt D mesons, Σ_c , Ξ_c ... are on the road Exploring new techniques, such as machine learning...

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

J/ ψ production in Pb–Pb collisions

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Y(1S) production in Pb–Pb collisions

ALI-PUB-157789

Xiaoming Zhang / CCNU

(Multi-)strange particle spectra

ALI-PREL-130849

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

- Spectra in Pb-Pb: spectra become harder as the multiplicity increases (flattening visible at low pT)
 - The change is most pronounced for heavier particles – Radial flow

pt-integrated ratio vs. multiplicity

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

- Steep increase with multiplicity in pp and p–Pb
- **uud** Saturation at higher multiplicities
 - No significant evolution with the collision energy and collision system
 - Slope of the increase depends on strangeness Nature Physics 13 (2017) 535-539 content ALICE Ω (sss pp. Vs = 7 TeV

Nean transverse momenta

- Similar hierarchy is observed in pp, p–Pb and peripheral A–A
 - Saturation at higher multiplicities
- In central A–A collisions: particles with similar masses have similar p_{T}
- The moderate increase is usually attributed to increasing collective radial flow

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

Xiaoming Zhang / CCNU

Study on HF and strangeness with ALICE

COIIECTIV

Conclusion

Heavy-flavour production

- Interplay of CNM (shadowing), collisional and radiative energy loss, coalescence, radial flow required to describe (rather) precise D-meson flow and R_{AA} data
- Intriguing results from charm-chemistry (Λ_c/D , D_s/D) ALICE upgrade crucial
- J/ ψ flow and D-meson flow set together stringent constraints on cause of charm flow
- Beauty-electron $v_2 > 0_{\dots}$ but bottomonia $v_2 \sim 0$

Strangeness production

- Hints of radial flow in small systems (high multiplicity pp)
- Hadron chemistry driven by multiplicity and not by collision energy
- Yields and <p_> show a hierarchy based on particle strangeness content

Thanks for your attention!

