### Sensitivity analysis of CME observables with AMPT model

# Guo-Liang Ma (马国亮)



### Outline

### • Motivation

### Model and Method

### • **Results**

### • Summary & outlook

# **Chiral magnetic effect (CME)**

D. E. Kharzeev, J.Liao, S. A.Voloshin, et. al. Prog. Part. Nucl. Phys. 88 (2016)



CME: (Extremely large magnetic field) && (nonzero chiral chemical potential) → Charge current/separation in the direction of magnetic field

### The observable $\gamma$



 The usual CME observable of is γ correlator measured at RHIC & LHC, consistent with CME expectation.

### **AMPT with CME-induced charge separation**



 To study CME, we introduce a strength of f% CME-induced charge separation into AMPT.

# **AMPT results on the observable** $\gamma$



- Original AMPT show comparable (60-70%) same-charge correlation (BG) with the data
- An initial charge separation ~10% is needed to describe the data
- $\gamma = BG + CME$
- Final state interaction effect: Only a small faction of CME can survive
- Non-linear sensitivity:  $\gamma$  can not response to a CME strength of f<=5%

### The new observable $R_{\Psi m}$

Background

N. Magdy et. al. PRC 97,061901 (2018)



- The new CME observable of  $R_{\Psi m_i}$  m=2,3
- Sensitive to CME:  $R_{\Psi_2}$  is convex without CME, but concave with CME from original AMPT and AVFD

### The new observable $R_{\Psi m}$



Affected by BG: hydrodynamic results show R<sub>Ψ2</sub> and R<sub>Ψ3</sub> could be concave without CME

### **AMPT with CME-induced charge separation**



- We introduce a strength of f% CME-induced charge separation into AMPT.
- We use the new charge-conserved version of AMPT
- Study  $R_{\Psi 2}$  and  $\gamma$  within same framework.

# **Method I: Mixing-particle method**



•  $C(\Delta S)$  is sensitive to CME, show a concave shape with CME

# **Method II: Shuffling-particle method**

$$R_{\Psi m}(\Delta S)$$
 correlator:

$$R_{\Psi_m}(\Delta S) = \frac{C_{\Psi_m}(\Delta S)}{C_{\Psi_m}^{\perp}(\Delta S)}$$

m=2,3



Select charged particles, and resign their charges randomly N. Magdy, et. al. PRC 97, 061901 (2018)



 R<sub>Ψ2</sub>(ΔS) is sensitive to CME: convex for background only, but concave if CME happens

# **AMPT results on R<sub>Ψ2</sub>**

#### Kinetic cut:0.35<pT<2GeV/c, $|\eta|$ <1

#### method I: Mixing-particle method method II: Shuffling-particle method



- The results from two methods are consistent.
- Background (W/O CME):  $C_{\Psi_2}$  is convex, and  $R_{\Psi_2}$  is flat
- Signal (With CME(f=10%)):  $C_{\Psi_2}$  is less convex, but  $R_{\Psi_2}$  is concave
- The shape of  $R_{\Psi 2}$  is a good probe to search for CME. Why?

# Stage evolution of R<sub>\P2</sub> W/O CME

#### $R_{\Psi 2}$ from Background:



- Initial stage:  $C_{\Psi_2}$  is and  $C_{\Psi_2}^{\perp}$  are flat
- After parton cascade:  $C_{\Psi 2}$  and  $C_{\Psi 2}^{\perp}$  are convex
- After coalescence:  $C_{\Psi 2}$  and  $C_{\Psi 2}^{\perp}$  are flat
- After hadronic rescatterings:  $C_{\Psi 2}$  and  $C_{\Psi 2}{}^{\perp}$  are convex
- But  $R_{\Psi 2}$  is always flat for any stages

# Stage evolution of $R_{\Psi 2}$ With CME

#### R<sub>Ψ2</sub> from Background+CME(f=10%):



- Initial stage:  $C_{\Psi_2}$  is and  $C_{\Psi_2}^{\perp}$  are concave
- After parton cascade:  $C_{\Psi_2}$  is concave,  $C_{\Psi_2}^{\perp}$  is flat
- After coalescence:  $C_{\Psi 2}$  and  $C_{\Psi 2}^{\perp}$  are flat
- After hadronic rescatterings:  $C_{\Psi 2}$  and  $C_{\Psi 2}{}^{\perp}$  are convex
- But  $R_{\Psi 2}$  is always concave for any stages

# Understanding the origin of $R_{\Psi 2}$ shape $R_{\Psi 2}$ stage evolution:



### **AMPT results on R<sub>Ψ3</sub>**



- $C_{\Psi 3}$  is and  $C_{\Psi 3}^{\perp}$  are same between W/O CME and With CME
- $R_{\Psi 3}$  is always flat in despite of CME
- $R_{\Psi 3}$  is not sensitive to CME, since  $\Psi 3$  is not correlated to B

### Sensitivity to the CME strength f%



**Initial charge seperation percentage:** 

$$f\% = \frac{N_{upward}^{+} - N_{downward}^{+}}{N_{upward}^{+} + N_{downward}^{+}}$$

### Sensitivity to CME of the observable $\gamma$

#### AMPT results on $\gamma$ for different initial CME percentages :



- $\Delta \gamma$  (f=2.5%) is similar to  $\Delta \gamma$  (W/O CME).
- $\Delta \gamma$  can not response to CME strength of f<=5%

### $C_{\Psi 2}$ & $R_{\Psi 2}$ for different CME percentages

#### AMPT results on $R_{\Psi 2}$ for different initial CME percentages :



- $R_{\Psi_2}$  (f=2.5%) is similar to  $R_{\Psi_2}$ (W/O CME), they look flat within current statistics.
- The shape of  $R_{\Psi_2}$  (f>=5%) is concave
- With increase of CME strength (f>=5%), the shape becomes more concave

### Sensitivity to CME of the observable $R_{\Psi 2}$



With increase of CME strength:

- the width of  $C_{\Psi 2}$  increases (less convex),
- $\bullet$  the width of  $C_{\Psi 2}{}^\perp$  keeps unchanged
- the width of  $R_{\Psi 2}$  decreases (more concave)

### Sensitivity comparison between $\gamma$ and $R_{\Psi 2}$



### Sensitivity comparison between $\gamma$ and $R_{\Psi 2}$



- $\gamma$  and  $R_{\Psi 2}$  response to CME strength of f>5%
- $\gamma$  and  $R_{\Psi 2}$  (f<5%) look similar to those (W/O CME).
- But  $R_{\Psi 2}$  needs enough statistics to see if any tiny concave shape.

### **Summary & outlook**

- CME-induced charge separation survives from final state interactions.
- The shape of  $R_{\Psi 2}$  is sensitive to CME
- Nonlinear sensitivity:
  - $\gamma$  and R<sub> $\Psi$ 2</sub> can response to CME strength of f>5%;
  - when f<5%,  $R_{\Psi 2}$  needs enough statistics to see if concave shape
- Sensitivity analysis of  $\gamma$  and  $R_{\Psi 2}$  in isobaric collisions?