Recent open bottom measurements at RHIC

Yifei Zhang

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China (USTC)

- Produced early in the history of heavy-ion collisions.
- Experience most of the stages of the system evolution.
- Sensitive to the medium properties: diffusion, η/s , temperature etc.

- Produced early in the history of heavy-ion collisions.
- Experience most of the stages of the system evolution.
- Sensitive to the medium properties: diffusion, η/s , temperature etc.

- Produced early in the history of heavy-ion collisions.
- Experience most of the stages of the system evolution.
- Sensitive to the medium properties: diffusion, η/s , temperature etc.
- Theory prediction: $\Delta E_{u,d,s} > \Delta E_c > \Delta E_b$.

- Produced early in the history of heavy-ion collisions.
- Experience most of the stages of the system evolution.
- Sensitive to the medium properties: diffusion, η/s , temperature etc.
- Theory prediction: $\Delta E_{u,d,s} > \Delta E_c > \Delta E_b$.

Is there a particle very different from others?

Is there a "big stone" too heavy to be moved in QGP storm?

Moeraki boulders were moved to the beach by storm waves in Austrilia.

RHIC detectors to measure HQ

 $\sigma_{r\phi}$ = 14.4 (23) um

19/07/19

Impact parameter (template) method

D^0 123 1.865 0.61 -	
B^0 459 5.279 0.40 0.081 + 0.	474
B^+ 491 5.279 0.40 0.086 + 0.	790

Bottom measurement from STAR

Strong suppression for B->J/ Ψ and B->D⁰ at high p_T => Bottom interacts with QGP? Less suppression for b->e than c->e (~2 σ), consistent with $\Delta E_c > \Delta E_b$. Less suppression for non-prompt D⁰ at $p_T \sim 4$ GeV/c, consistent with $\Delta E_c > \Delta E_b$.

Impact parameter method + unfolding from PHENIX

$e^{HF} R_{AA}$ from PHENIX

Electron from charm quarks are more suppressed.

 \diamondsuit Hint for less bottom suppression at low p_T compared to charm.

Large uncertainties due to limited constraints.

$e^{HF} v_2$ from PHENIX

Flows of electron from charms and bottoms in Au+Au are separated.
Charm flows less than light-flavor hadrons, hydro mass ordering.
Hint of bottom flow at RHIC with large uncertainties.

Data driven method (DDM)

See Zhenyu and Shusu 's talks for open charm measurements.

Largest statistics of Au+Au 200 GeV minimum bias data cumulated so far.
Taking advantage of precision measurements of open charm hadrons with vertex detectors.

Minimize the model dependence.

Bottom isolation from DDM

All charm components are scaled by measured cross sections and B.R.

 \diamondsuit Extracted b->e with good uncertainties from DDM.

Sottom fraction extracted in Au+Au is systematically higher than that in p+p collisions, consistent with less bottom suppression compared to charm in HI collisions.

Bottom NMR from DDM

arXiv: 1906.08974

Consistent with template method but improved precision.

Clear mass dependence of c/b e-loss shown. Bottom lose less energy.

 \diamondsuit b->e is roughly consistent with DUKE model, but c->e shows stronger suppression at $p_T > 4$ GeV/c.

Sood agreement with c(b)->e / FONLL.

Bottom NMR compared with PHENIX

Within uncertainties our result is consistent with PHENIX data.
PHENIX result has no precision to tell the difference between c and b.
Our result shows clear mass dependence of heavy quark energy loss.

Too heavy to be moved

 \bigcirc Non-zero b->e v₂ observed at p_T > 3 GeV/c.

 \diamondsuit Much smaller v₂ compared with c->e at p_T < 4 GeV/c.

Less flow compared with NCQ scaling hypothesis at 2.5 < p_T < 4.5 GeV/c assuming only mass effect, indicating bottom is unlikely thermalized at RHIC.</p>

Bottom v₂ compared with PHENIX

PHENIX results are consistent with ours within uncertainties but have no precision to tell the difference between charm and bottom.

Summary

- Heaviest quark (bottom) measured at RHIC via multiple decay channels of open bottom hadrons -> J/ψ , D⁰ and electron.
- Both R_{AA} results from STAR and PHENIX show hint of mass dependence of heavy quark energy loss via impact parameter methods.
- Non-zero b->e v₂ observed by PHENIX but no precision to tell difference between charm and bottom.
- Improved results are obtained via a data driven method taking advantage of highest statistics accumulated and best precision of open charm measurements.
 - R_{AA} of c->e and b->e show clear suppression but b->e is less suppressed compared with c->e in Au+Au collisions at 200 GeV.
- Non-zero b->e v_2 observed at p_T > 3 GeV/c.
- Much smaller b->e v₂ compared with c->e at p_T < 4 GeV/c, which can not be explained by mass effect only (NCQ scaling), indicating that bottom is unlikely thermalized at RHIC energy.</p>

Summary

- Heaviest quark (bottom) measured at RHIC via multiple decay channels of open bottom hadrons -> J/ψ , D⁰ and electron.
- Both R_{AA} results from STAR and PHENIX show hint of mass dependence of heavy quark energy loss via impact parameter methods.
- Non-zero b->e v₂ observed by PHENIX but no precision to tell difference between charm and bottom.
- Improved results are obtained via a data driven method taking advantage of highest statistics accumulated and best precision of open charm measurements.
 - R_{AA} of c->e and b->e show clear suppression but b->e is less suppressed compared with c->e in Au+Au collisions at 200 GeV.
- Non-zero b->e v_2 observed at p_T > 3 GeV/c.

Much smaller b->e v₂ compared with c->e at p_T < 4 GeV/c, which can not be explained by mass effect only (NCQ scaling), indicating that bottom is unlikely thermalized at RHIC energy.</p>

Thank you for your attention!