
Nuclear effects in eA and	pA collisions

QCD物理暨国家自然科学基金重大项目交流会
7月17-25,威海

Hongxi Xing	
邢宏喜



Outline

2

q Introduction

q Jet	quenching	in	eA

q Summary

q Incoherent	multiple	scattering	in	pA

q Transverse	momentum	broadening	in	eA and	pA



3

Key	questions	at	EIC,	EicC

ence and in nuclear science.
The scientific goals and the machine pa-

rameters of the EIC were delineated in delib-
erations at a community-wide program held
at the Institute for Nuclear Theory (INT)
[2]. The physics goals were set by identifying
critical questions in QCD that remain unan-
swered despite the significant experimental

and theoretical progress made over the past
decade. This White Paper is prepared for
the broader nuclear science community, and
presents a summary of those scientific goals
with a brief description of the golden mea-
surements and accelerator and detector tech-
nology advances required to achieve them.

1.2 Science Highlights of the Electron Ion Collider

1.2.1 Nucleon Spin and its 3D Structure and Tomography

Several decades of experiments on deep inelastic scattering (DIS) of electron or muon beams
off nucleons have taught us about how quarks and gluons (collectively called partons) share
the momentum of a fast-moving nucleon. They have not, however, resolved the question of
how partons share the nucleon’s spin and build up other nucleon intrinsic properties, such
as its mass and magnetic moment. The earlier studies were limited to providing the lon-
gitudinal momentum distribution of quarks and gluons, a one-dimensional view of nucleon
structure. The EIC is designed to yield much greater insight into the nucleon structure
(Fig. 1.1, from left to right), by facilitating multi-dimensional maps of the distributions of
partons in space, momentum (including momentum components transverse to the nucleon
momentum), spin, and flavor.

Figure 1.1: Evolution of our understanding of nucleon spin structure. Left: In the 1980s,
a nucleon’s spin was naively explained by the alignment of the spins of its constituent quarks.
Right: In the current picture, valence quarks, sea quarks and gluons, and their possible orbital
motion are expected to contribute to overall nucleon spin.

The 12 GeV upgrade of CEBAF at JLab will start on such studies in the kinematic
region of the valence quarks, and a similar program will be carried out by COMPASS at
CERN. However, these programs will be dramatically extended at the EIC to explore the
role of the gluons and sea quarks in determining the hadron structure and properties. This
will resolve crucial questions, such as whether a substantial “missing” portion of nucleon
spin resides in the gluons. By providing high-energy probes of partons’ transverse momenta,
the EIC should also illuminate the role of their orbital motion contributing to nucleon spin.
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1.2 Science Highlights of the Electron Ion Collider

1.2.1 Nucleon Spin and its 3D Structure and Tomography

q How	quarks	and	gluons	distribute	their	momentum	
and	spin	inside	the	nucleon?

q Quarks	and	gluons	inside	nuclei

h

h

γ∗

γ∗

0.30

0.50

0.70

0.90

1.10

1.30

1.50

R
a

tio
 o

f 
p

a
rt

ic
le

s 
p

ro
d

u
ce

d
 in

 le
ad

 o
ve

r 
p

ro
to

n
 D0 mesons (lower energy)

Pions (lower energy)
D0 mesons (higher energy)
Pions (higher energy)
Wang, pions (lower energy)
Wang, pions (higher energy)

 0.01 < y < 0.85, x > 0.1, 10 fb -1
 

 Higher energy : 25 GeV
2
< Q

2
< 45 GeV

2
, 140 GeV < < 150 GeV 

 Lower energy : 8 GeV2< Q2<12 GeV2, 32.5 GeV< < 37.5 GeV

1-  D0
systematic

uncertainty

1-  pion 
systematic
uncertainty

v
v

0.0 0.2 0.4 0.6 0.8 1.0
Z

Figure 1.7: Left: A schematic illustrating the interaction of a parton moving through cold
nuclear matter: the hadron is formed outside (top) or inside (bottom) the nucleus. Right: The
ratio of the semi-inclusive cross-section for producing a pion (red) composed of light quarks,
and a D0 meson (blue) composed of heavy quarks in e+lead collisions to e+deuteron collisions,
plotted as a function of z, the ratio of the momentum carried by the produced hadron to that
of the virtual photon (γ∗), as shown in the plots on the left.

much lower value of x, approaching the re-
gion of gluon saturation. In addition, the

EIC could for the first time reliably quantify
the nuclear gluon distribution over a wide
range of momentum fraction x.

1.2.3 Physics Possibilities at the Intensity Frontier

The subfield of Fundamental Symmetries in nuclear physics has an established history of
key discoveries, enabled by either the introduction of new technologies or the increase in
energy and luminosity of accelerator facilities. While the EIC is primarily being proposed for
exploring new frontiers in QCD, it offers a unique new combination of experimental probes
potentially interesting to the investigations in Fundamental Symmetries. For example,
the availability of polarized beams at high energy and high luminosity, combined with a
state-of-the-art hermetic detector, could extend Standard Model tests of the running of
the weak-coupling constant far beyond the reach of the JLab12 parity violation program,
namely toward the Z-pole scale previously probed at LEP and SLC.
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1.2.3 Physics Possibilities at the Intensity Frontier

q Nuclear	structure

See	Feng	Yuan’s	talk
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QCD	factorization	theorem
q Factorization	in	deep	inelastic	scattering	

§ Question:	cross	section	involving	identified	hadron(s)	is	not infrared	safe	
Hadronic	scale	~	1/fm is	non-perturbative,	the	cross	section	is	not
perturbative	calculable.			

§ Solution	from	theory	advances:		QCD	factorization	theorem	

Observables with ONE identified hadron 

Cross section is infrared divergent, and nonperturbative! 

�DIS
`p!`0X(everything)

Measured              Hard-probe             Universal-hadron structure 

Cross Section         Infrared-Safe         Nonperturbative-distribution = ⌦

QCD factorization 
(approximation!) 

Identified initial-state  
hadron-proton! 

QCD	factorization	theorem	is	the	corner	stone	of	high	energy	physics!		

The paradigm of  perturbative QCD 

!  The common wisdom: to trace back what’s inside the proton from 
the outcome of  the collisions, we rely on QCD factorization 

!  Hadron structure: encoded in PDFs 

!  QCD dynamics at short-distance: partonic cross section, 
perturbatively calculable 
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parton

�̂parton

fparton(x)
Parton Distribution Functions (PDFs): 
Probability density for finding a parton in 
a proton with momentum fraction x 

�proton(Q) = fparton(x)⌦ �̂parton(Q)
Universal (measured) calculable 
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The global PDF analysis

23

Hadronic scale:
Global PDF fit results

LHC scale

Perturbative 
Evolution

 Combine state-of-the-art theory calculations, the constraints from PDF-sensitive measurements from 
different processes and colliders, and a statistically robust fitting methodology

 Extract Parton Distributions at hadronic scales of a few GeV, where non-perturbative QCD sets in

Use perturbative evolution to compute PDFs at high scales as input to LHC predictions

High scales:
input to 

LHC

Juan Rojo                                                                                                                 MPP, Munich, 26/07/2017

The global PDF analysis

23

Hadronic scale:
Global PDF fit results

LHC scale

Perturbative 
Evolution

 Combine state-of-the-art theory calculations, the constraints from PDF-sensitive measurements from 
different processes and colliders, and a statistically robust fitting methodology

 Extract Parton Distributions at hadronic scales of a few GeV, where non-perturbative QCD sets in

Use perturbative evolution to compute PDFs at high scales as input to LHC predictions

High scales:
input to 

LHC

Juan Rojo                                                                                                                 MPP, Munich, 26/07/2017

prediction

The	predictive	power	of	pQCD
qPredict	the	proton	inner	structure	with	higher	resolution	scale

The paradigm of  perturbative QCD 

!  The common wisdom: to trace back what’s inside the proton from 
the outcome of  the collisions, we rely on QCD factorization 

!  Hadron structure: encoded in PDFs 

!  QCD dynamics at short-distance: partonic cross section, 
perturbatively calculable 
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fparton(x)
Parton Distribution Functions (PDFs): 
Probability density for finding a parton in 
a proton with momentum fraction x 

�proton(Q) = fparton(x)⌦ �̂parton(Q)
Universal (measured) calculable 

Proton	structure	is	encoded	in	the	Parton	Distribution	Functions	(PDFs)	
PDFs:	probability	density	for	finding	a	parton in	a	proton	with	momentum	fraction	x.



q Generalized		factorization	theorem

leading	twist

twist-3

twist-4

• High	twist	effects	=	power	corrections	=	multiple	scattering	contributions

• What’s	the	size	of	the	next	power	corrections?

• Observables

in	general	small	compare	to	leading	power	term

nuclear	enhanced	power	correction
leading	power	vanishes	- SSAs
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perturbative	expansion

Multiple	scattering
expansion
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x ⌧ 1x ⇠ 1

Multiple	scattering	in	nuclear	medium
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qMultiple	scattering	in	dilute	and	dense	region

Increasing	energy

§ A dense system
§ Probes	interact	

coherently

Going	forward

x ⇠ p?p
s
e�y

Parton	density	increases

§ A dilute system
§ Probes	interact	

independently
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Looking	forward	and	backward

14
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FIG. 12. RpA of charged hadrons as a function of pT at backward rapidity, �2.2 < ⌘ < �1.2, Au-going (filled [black]
circles) and forward rapdity, 1.4 < ⌘ < 2.4, p-going (open [red] circles) in various centrality classes of p+Au collisions atp
sNN = 200 GeV.
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FIG. 13. RpA of charged hadrons in 2.5 < pT < 5 GeV/c as a function of ⌘ in various centrality classes of p+Au collisions atp
sNN = 200 GeV. Also shown are comparisons to a pQCD calculation [14].PHENIX	Collaboration	arXiv:1906.09928
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Looking	forward

I.	Vitev,	J.	Qiu,	PLB,	2006

1

Q
⇠ 1

xbPb
� 2R

✓
m

p

◆
Probing	length:

In	forward	rapidity	region,	xb is	small,	the	
probe	interacts	with	the	whole	nucleus	
coherently.

q Coherent	multiple	scattering	in	small-x
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Single	scattering Double	scattering
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§ multiple	scattering	expansion

q Incoherent	multiple	scattering	in	p+A collisions

d�pA!hX = d�(S)
pA!hX + d�(D)

pA!hX + · · ·

1

Q
⇠ 1

xbPb
< 2R

✓
m

p

◆

In	backward	rapidity	region,	xb is	large.	The	probe	interacts	with	the	nucleus	
incoherently,	we	need	to	calculate	multiple	scattering	contributions	order	by	
order,	the	leading	contribution	comes	from	double	scattering.	

Probing	length:

Looking	backward
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§ Double	scattering	Feynman	diagrams qq0 ! qq0

Initial	state	double	scattering
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Final	state	double	scattering

(																			as	an	example)

Eh
d�

(D)

d3Ph
/

Z
dz

z2
Dc!h(z)

Z
dx

0

x0 fa/p(x
0)

Z
dx1dx2dx3T (x1, x2, x3)

✓
�1

2
g
⇢�

◆
1

2

@
2

@k
⇢
?@k

�
?
H(x1, x2, x3, k?)

�

k?!0

§ Double	scattering	cross	section	(twist-4	contribution)
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§ Final	result	(incoherent	multiple	scattering)

double	scattering
hard	factor

(a:	incoming)

(c:	outgoing)

Kang,	Vitev,	HX,	PRD	2013
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û

H
I
ab!cd =

8
<

:

CFH
U
ab!cd a=quark

CAH
U
ab!cd a=gluon

H
F
ab!cd =

8
<

:

CFH
U
ab!cd c=quark

CAH
U
ab!cd c=gluon



13

14

2 4 6 8 10

0.5

1

1.5

2

2.5

3

3.5  
pAR

=200 GeVNNs+X ±h→p+Au
0%-5% centrality

<-1.2 (Au-going)η-2.2<
pQCD calculation (Au-going)

<2.4 (p-going)η1.2<

(a)

2 4 6 8 10

0.5

1

1.5

2

2.5

3

3.5
=200 GeVNNs+X ±h→p+Au

5%-10% centrality
<-1.2 (Au-going)η-2.2<

pQCD calculation (Au-going)
<2.4 (p-going)η1.2<

(b)

2 4 6 8 10

0.5

1

1.5

2

2.5

3

3.5
=200 GeVNNs+X ±h→p+Au

10%-20% centrality
<-1.2 (Au-going)η-2.2<

pQCD calculation (Au-going)
<2.4 (p-going)η1.2<

(c)

2 4 6 8 10
 (GeV/c) 

T
p

0

0.5

1

1.5

2

2.5

3

  
pAR

=200 GeVNNs+X ±h→p+Au
20%-40% centrality

<-1.2 (Au-going)η-2.2<
pQCD calculation (Au-going)

<2.4 (p-going)η1.2<

(d)

2 4 6 8 10
 (GeV/c) 

T
p

0

0.5

1

1.5

2

2.5

3
=200 GeVNNs+X ±h→p+Au

40%-60% centrality
<-1.2 (Au-going)η-2.2<

pQCD calculation (Au-going)
<2.4 (p-going)η1.2<

(e)

2 4 6 8 10
 (GeV/c) 

T
p

0

0.5

1

1.5

2

2.5

3
=200 GeVNNs+X ±h→p+Au

60%-84% centrality
<-1.2 (Au-going)η-2.2<

pQCD calculation (Au-going)
<2.4 (p-going)η1.2<

PHENIX

(f)

FIG. 12. RpA of charged hadrons as a function of pT at backward rapidity, �2.2 < ⌘ < �1.2, Au-going (filled [black]
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FIG. 13. RpA of charged hadrons in 2.5 < pT < 5 GeV/c as a function of ⌘ in various centrality classes of p+Au collisions atp
sNN = 200 GeV. Also shown are comparisons to a pQCD calculation [14].

q Looking	backward	in	PHENIX Kang,	Vitev,	HX	2019
PHENIX,	arXiv:	1906.09928
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TABLE IV. Parameter used in pythia8

parameter value description

SoftQCD:inelastic=on on QCD process for MB

PDF:pSet 7 cteq6l parton distribution function

MultipartonInteractions:Kfactor 0.5 Multiplication factor for multiparton interaction
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FIG. 8. RpA of charged hadrons as a function of pT at
(a) forward and (b) backward rapidity in p+Au 0%–100%
centrality selected collisions at

p
sNN = 200 GeV. Also shown

are comparisons to a pQCD calculation [14] and calculations
based on the nPDF sets [22, 23].

before and after hard scattering [14] at backward rapid-
ity are also compared with the data, and it agrees with
the both p+Al and p+Au data.

Figure 9 shows RpA of charged hadrons integrated over
the interval 2.5 < pT < 5 GeV/c as a function of ⌘ in the
0%–100% centrality selection of (a) p+Al and (b) p+Au
collisions at

p
sNN = 200 GeV. Again the data are com-

pared with pQCD calculations at backward rapidity and
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FIG. 9. RpA of charged hadrons in 2.5 < pT < 5 GeV/c as a
function of ⌘ in (a) p+Al and (b) p+Au 0%–100% centrality
selected collisions at

p
sNN = 200 GeV. Also shown are com-

parisons to a pQCD calculation [14] and calculations based
on the nPDF sets [22, 23].

calculations based on two nPDF sets. In p+Au collisions,
there is a modest hint that enhancement at backward ra-
pidity becomes larger as ⌘ approaches midrapidity, while
the suppression at forward rapidity becomes stronger. In
p+Al collisions, RpA at forward rapidity is quite simi-
lar to what is observed in p+Au collisions, whereas it
shows a smaller enhancement at backward rapidity than
the results in p+Au collisions. The comparison with

q Nuclear	PDFs	vs.	incoherent	multiple	scattering
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§ Incoherence	multiple	scattering	in	heavy	meson	production
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Parton	energy	loss	in	eA
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qMedium	induced	gluon	radiation	– twist	4	contribution

qMedium	modified	fragmentation	functions

renormalized quark fragmentation function Dq→h(zh, µ2)
satisfies the QCD evolution equation [10].

FIG. 1. Diagrams for rescattering with gluons (a) and
quarks (b) without and with gluon radiation (c) in deeply in-
elastic eA scattering. Possible cuts are shown by the dashed
lines

In this paper we will consider contributions of quark
rescattering with partons from another nucleon inside the
nucleus. Such contributions are proportional to the nu-
clear size A1/3 [9]. For large enough A, we can neglect
other A-independent HT effects. For large Q2 in DIS,
it may suffice to only consider one rescattering. The
contributions of one rescattering can be treated as HT
corrections to the LT results. We work in a frame-
work [12] in which the twist-four contributions can be
expressed as the convolution of the partonic hard parts
and four-parton matrix elements [9]. At the lowest order,
rescattering without gluon radiation as shown in Fig. 1(a)
broadens the transverse momentum of the leading jet [11]
but contribute little to parton energy loss. One can also
neglect rescattering with another quark in Fig. 1(b).
The dominant HT contributions to the QCD evolu-

tion of the fragmentation functions come from radiative
processes involving rescattering with a gluon from an-
other nucleon as illustrated by the central-cut diagram in
Fig. 1(c). Kinematics only allows two poles, one at each
side of the central-cut, out of the four propagators in the
diagram. This leads to four possible combinations each
give different momentum fractions to the initial partons.
In one case, the initial gluon has x2 = xL + xD which is
finite when kT → 0, where

xL =
ℓ2T

2p+q−z(1− z)
; xD =

k2T − 2k⃗T · ℓ⃗T
2p+q−z

, (4)

ℓT is the transverse momentum of the radiated gluon, kT
is the initial gluon’s intrinsic transverse momentum, and
z = ℓ−q /q

− is the momentum fraction carried by the final
quark. This corresponds to gluon radiation induced by
the rescattering and is referred to as a double-hard pro-
cess. In another combination, x2 = xD which vanishes
when kT → 0. In this case the rescattering is soft and
the gluon radiation is induced by the initial hard photon-
quark scattering. Such a process is called hard-soft. The
four contributions from Fig. 1(c) correspond to these two
distinct processes and their interferences. Their sum has
the form,

HD(1)
µν ∝ (1 − e−ixLp+y−

2 )(1 − e−ixLp+(y−

−y−

1
))

× eixDp+(y−

1
−y−

2
). (5)

This clearly manifests the LPM interference pattern
caused by the destructive interferences between hard-soft
and double-hard processes. The interference pattern is
dictated by the gluon’s formation time, τf ≡ 1/xLp+, rel-
ative to the nuclear size. The two processes completely
cancel each other in the collinear limit when ℓT → 0.
Diagrams involving three-gluon vertices have exactly the
same structure as Fig. 1(c), except that they have differ-
ent momentum dependence and color factor in the hard
part.
We have considered all together 23 possible cut dia-

grams, 14 of them are interferences between no and dou-
ble rescattering (shown as the left and right-cut diagrams
in Fig. 1(c)) which cancel some of the contributions from
central-cut diagrams. Including virtual corrections, we
obtain [13] the leading HT contribution from rescatter-
ing processes,

dWD
µν

dzh
=

∑

q

e2q

∫
dxH(0)

µν (x, p, q)
2παs

Nc

∫
dℓ2T
ℓ4T

∫ 1

zh

dz

z

× Dq→h(zh/z)
αs

2π
CA

[
1 + z2

(1− z)+
TA
qg(x, xL)

+ δ(z − 1)∆TA
qg(x, ℓ

2
T )

]
, (6)

where

TA
qg(x, xL) =

∫
dy−

2π
dy−1 dy

−

2 e
i(x+xL)p+y−+ixT p+(y−

1
−y−

2
)

1
2 ⟨A|ψ̄q(0) γ

+ F +
σ (y−2 )F

+σ(y−1 )ψq(y
−)|A⟩

× (1− e−ixLp+y−

2 )(1− e−ixLp+(y−

−y−

1
))

× θ(−y−2 )θ(y
−

2 − y−1 ) ,

(7)

is quark-gluon correlation function which essentially con-
tains four independent four-parton matrix elements in a
nucleus and xT = ⟨k2T ⟩/2p

+q− = xB⟨k2T ⟩/Q
2. With the

definition of the + functions [14], the term proportional
to the δ-function accounts for virtual corrections and

2

§ Phenomenological	extension	to	study	jet	quenching	in	heavy	ion	collisions.
See	talk	by	Guang-You	Qin.	

Guo,	Wang,	2002
Zhang,	Wang,	Wang,	2004
Du,	Wang,	HX,	Zong,	2018
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equations for mFF’s [10, 18, 25],

@D̃h
q (zh, Q
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2)D̃h

g (
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z
,Q2)

i
, (1)

@D̃h
g (zh, Q
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@ lnQ2
=

↵s(Q2)
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Z 1
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h
�̃g!gg(z,Q

2)D̃h
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z
,Q2)

+

2nfX

q=1

�̃g!qq̄(z,Q
2)D̃h

q (
zh
z
,Q2)

3

5 , (2)

which are similar to the DGLAP equations for vacuum FF’s.
The differences here from the vacuum DGLAP equations are
the medium-modified splitting functions �̃a!bc,

�̃a!bc(z,Q
2) = �a!bc(z) +��a!bc(z,Q

2), (3)

which contain both the parton splittings in vacuum �a!bc(z)
and medium-induced ones ��a!bc(z,Q2), whose detailed
expressions can be found in Refs. [18, 25]. Note that the
medium-induced splitting functions ��a!bc depend on the
jet transport parameter q̂ integrated over the path length of the
quark propagation. For example,

��q!qg(z, `
2
T ) =

1

`2T + µ2
D

⇥
CA(1� z)(1 + (1� z)2)/z

+ CF z(1 + (1� z)2)
⇤

⇥
Z

dy�q̂(y�)4 sin2(xLp
+y�/2), (4)

is the medium-induced quark splitting function, where `T is
the relative transverse momentum of the final partons and
xL = `2T /2p

+q�z(1 � z) is the fractional light-cone mo-
mentum carried by the hard parton from the target nucleus
that induces the parton splitting, y� is the light-cone coordi-
nate of the target nucleons involved in the secondary scatter-
ing and µD represents beam partons’ average intrinsic trans-
verse momentum inside a nucleon. The jet transport param-
eter q̂ here arises from the twist-four quark-gluon correlation
function in a factorized form as assumed in Ref. [18]. The
medium-induced quark-to-gluon and gluon-to-quark splitting
functions in Eqs. (1) and (2) couple the quark and gluon frag-
mentation functions through the mDGLAP equations. These
are where the medium-induced flavor conversion occurs and
will lead to a change in the flavor composition in the mFF’s of
the quark jets in SIDIS.

To solve the mDGLAP evolution equations in Eqs. (1) and
(2), we have to provide the initial conditions of mFF’s at a
given initial scale Q0. These initial conditions are not calcu-
lable in perturbative QCD (pQCD) and have to be given by a
model assumption. Instead of using vacuum FF’s for the ini-
tial conditions [26], we proposed a convoluted model [20] in
order to take into account of parton energy loss for partons
with virtualities below Q2

0. The convoluted initial conditions
are obtained from the convolution of vacuum FF’s at the ini-
tial scale Q2

0 and the quenching weight due to induced gluon

radiation,

eDh
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2
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Dh

g (
z

✏
, Q2

0), (6)

where the quenching weight Pa(✏, Q2
0) represents the prob-

ability of total fractional energy loss ✏ by the initial parton
a due to induced gluon radiation and Ga(✏) represents the
spectrum distribution of the radiated gluons with fractional
energy ✏. The vacuum FF’s Dh

a(z,Q
2) are taken from the

HKN parametrization [27]. The quenching weight Pa(✏, Q2
0)

is calculated from a Poisson convolution of the single gluon
spectrum dNa

g /dz at scale Q2
0,

Pa(✏, Q
2
0) =

1X

n=0

1

n!

nY

i=1

Z 1

0
dzi

dNa
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dzi
(Q2

0)�(✏�
nX

i=1

zi)

⇥ exp


�
Z 1

0
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dNa
g

dz
(Q2

0)

�
, (7)

under the assumption that the number of independent
gluon emissions satisfies the Poisson distribution. We use
Monte Carlo simulations to calculate the quenching weight
Pa(✏, Q2

0). This method also enables us to record the energy
fraction of each radiated gluon and then obtain the gluon en-
ergy spectrum Ga(✏) from multiple induced emissions. With
Ga(✏), we can include contributions from the fragmentation
of radiated gluons to the initial conditions and also ensure the
momentum conservation at the same time. Using such initial
conditions for the mDGLAP equations, we can describe the
HERMES data [15] better as compared to other models for
initial conditions. Details can be found in Ref. [20].

Jet quenching in SIDIS is measured experimentally via the
suppression of leading hadron spectra. The nuclear modifica-
tion factor Rh

A for hadron spectra is defined in terms of a ratio
of hadron yields per DIS event Nh/Ne for a nuclear target A
to that for a deuterium target D [13–16],

Rh
A(⌫, Q

2, z) =


Nh(⌫, Q2, z)

Ne(⌫, Q2)

�

A

/


Nh(⌫, Q2, z)

Ne(⌫, Q2)

�

D

. (8)

Hadron yields per DIS event Nh/Ne from LO pQCD can
be related to the nuclear modified FF’s eDh

q (z,Q
2) from the

mDGLAP evolution equations in Eqs. (1) and (2),

Nh(⌫, Q2, z)

Ne(⌫, Q2)

����
A

=
⌃e2qq(xB , Q2) eDh

q (z,Q
2)

⌃e2qq(xB , Q2)

�����
A

, (9)

where q(x,Q2) is the quark distribution function inside the
nucleus and eq is the quark’s charge. The mFF’s eDh

q (z,Q
2)

are obtained from the numerical solution of the mDGLAP
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functions (FF) in Fig.1 and Fig.2 are taken from DSS07 [3] and DSS14 [4, 5]
respectively. I think that both the results in Fig.1 and Fig.2 are acceptable,
though there are several experimental data points that are not described
quite well in both cases. Note that in following fitting to the HERMES
data, the calculation of π+, π− and K+ spectra uses FF from DSS14, while
the calculation of K− spectra uses FF from DSS07. The reason of the differ-
ent choices is, though I tend to use lastest version of FF, i.e., DSS14, but in
calculations I find that using DSS14 the K− cross sections at some kinemat-
ics sets are negative. Though at the kinematics the HERMES measurements
covered there is no negative cross section for K−, but after testing I find
that using K− FF from DSS14 leads larger χ2 than that from DSS07, so I
keep using K− FF from DSS07 in new calculations.
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Figure 1: Multiplicities of pion and kaon in e+p collisions, theoretical results
are calculated using PDF from MSTW [2] and FF from DSS07 [3] .

2 Results to describe HERMES data of Rh
A

Four years ago, with mistake in the calculation of the plus function, our
NLO result could not describes the HERMES data of nuclear modification
on hadron spectra. But actually this mistake has little effect on the value of

nuclear modification factor Rh
A ≡

Mh
A(xB ,Q2,z)

Mh
n (xB ,Q2,z)

, because in the calculation of

Mh
n (xB, Q

2, z) and Mh
A(xB, Q

2, z) the mistake exists both in the numerator
and the denominator in Eq.3. The main reason is that at NLO the SIDIS
cross section in e+p collisions is very sensitive to the matching of PDF and
FF.

2
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equations for mFF’s [10, 18, 25],
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which are similar to the DGLAP equations for vacuum FF’s.
The differences here from the vacuum DGLAP equations are
the medium-modified splitting functions �̃a!bc,

�̃a!bc(z,Q
2) = �a!bc(z) +��a!bc(z,Q

2), (3)

which contain both the parton splittings in vacuum �a!bc(z)
and medium-induced ones ��a!bc(z,Q2), whose detailed
expressions can be found in Refs. [18, 25]. Note that the
medium-induced splitting functions ��a!bc depend on the
jet transport parameter q̂ integrated over the path length of the
quark propagation. For example,
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is the medium-induced quark splitting function, where `T is
the relative transverse momentum of the final partons and
xL = `2T /2p

+q�z(1 � z) is the fractional light-cone mo-
mentum carried by the hard parton from the target nucleus
that induces the parton splitting, y� is the light-cone coordi-
nate of the target nucleons involved in the secondary scatter-
ing and µD represents beam partons’ average intrinsic trans-
verse momentum inside a nucleon. The jet transport param-
eter q̂ here arises from the twist-four quark-gluon correlation
function in a factorized form as assumed in Ref. [18]. The
medium-induced quark-to-gluon and gluon-to-quark splitting
functions in Eqs. (1) and (2) couple the quark and gluon frag-
mentation functions through the mDGLAP equations. These
are where the medium-induced flavor conversion occurs and
will lead to a change in the flavor composition in the mFF’s of
the quark jets in SIDIS.

To solve the mDGLAP evolution equations in Eqs. (1) and
(2), we have to provide the initial conditions of mFF’s at a
given initial scale Q0. These initial conditions are not calcu-
lable in perturbative QCD (pQCD) and have to be given by a
model assumption. Instead of using vacuum FF’s for the ini-
tial conditions [26], we proposed a convoluted model [20] in
order to take into account of parton energy loss for partons
with virtualities below Q2

0. The convoluted initial conditions
are obtained from the convolution of vacuum FF’s at the ini-
tial scale Q2

0 and the quenching weight due to induced gluon

radiation,
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where the quenching weight Pa(✏, Q2
0) represents the prob-

ability of total fractional energy loss ✏ by the initial parton
a due to induced gluon radiation and Ga(✏) represents the
spectrum distribution of the radiated gluons with fractional
energy ✏. The vacuum FF’s Dh

a(z,Q
2) are taken from the

HKN parametrization [27]. The quenching weight Pa(✏, Q2
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is calculated from a Poisson convolution of the single gluon
spectrum dNa

g /dz at scale Q2
0,

Pa(✏, Q
2
0) =

1X

n=0

1

n!

nY

i=1

Z 1

0
dzi

dNa
g

dzi
(Q2

0)�(✏�
nX

i=1

zi)

⇥ exp


�
Z 1

0
dz

dNa
g

dz
(Q2

0)

�
, (7)

under the assumption that the number of independent
gluon emissions satisfies the Poisson distribution. We use
Monte Carlo simulations to calculate the quenching weight
Pa(✏, Q2

0). This method also enables us to record the energy
fraction of each radiated gluon and then obtain the gluon en-
ergy spectrum Ga(✏) from multiple induced emissions. With
Ga(✏), we can include contributions from the fragmentation
of radiated gluons to the initial conditions and also ensure the
momentum conservation at the same time. Using such initial
conditions for the mDGLAP equations, we can describe the
HERMES data [15] better as compared to other models for
initial conditions. Details can be found in Ref. [20].

Jet quenching in SIDIS is measured experimentally via the
suppression of leading hadron spectra. The nuclear modifica-
tion factor Rh

A for hadron spectra is defined in terms of a ratio
of hadron yields per DIS event Nh/Ne for a nuclear target A
to that for a deuterium target D [13–16],
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Hadron yields per DIS event Nh/Ne from LO pQCD can
be related to the nuclear modified FF’s eDh

q (z,Q
2) from the

mDGLAP evolution equations in Eqs. (1) and (2),
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where q(x,Q2) is the quark distribution function inside the
nucleus and eq is the quark’s charge. The mFF’s eDh

q (z,Q
2)

are obtained from the numerical solution of the mDGLAP

q Nuclear	modification	factor
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§ Medium	effect	in	HERMES
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Figure 4: The z dependence of calculated Rh
A for pions and kaons with

different values of q̂0 compared with HERMES data [7] for Ne, Kr, and Xe
targets.
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Figure 5: The Q2 dependence of calculated Rh
A for pions and kaons with

different values of q̂0 compared with HERMES data [7] for Ne, Kr, and Xe
targets.
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q Searching	for	Eloss and	flavor	conversion

 [GeV]ν
0 10 20 30 40 50

h MR

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

+π
+K

p

<0.4h0.2<z

, 0.1<y<0.852>4 GeV2W

<0.35
B

, 0.25<x2>1 GeV2Q

/A-1 L dt=10 fb∫

hz
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mh R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
2

<0.15B0.05<x
<0.25B0.15<x
<0.35B0.25<x
<0.65B0.35<x

<13GeVν7GeV<

Medium	induced	flavor	conversion	leads	to	
enhancement	of	K- production	yield.



21

Transverse	momentum	
broadening	in	eA and	pA



A	good	observable	to	probe	nuclear	medium

q Transverse	momentum	broadening	 Guo,	1998;	Guo,	Qiu 2000

§ Sensitive	to	nuclear	quark-gluon	quantum	correlation
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Figure 2. Schematic representation of partonic subprocesses in QCD “embedded” within the experimentally
measured semi-inclusive deep inelastic lepton (l) scattering l + p �! l0 + h + X, where p is the incoming proton
and h represents the detected hadron in the final state (left panel). The right panel shows the analogous situation
for the Drell-Yan process h1+h2 �! �⇤+X �! l+ l0+X, where h1(2) represent incoming hadrons. The thick lines
in both panels denote “eikonalized”, i.e., Wilson-line extended quarks to account for initial (DY) or final (SIDIS)
state interactions. Examples of single gluon exchanges emanating from these lines are also shown. Additional
hard-gluon exchanges have been omitted. In both panels the symbol X represents an inclusive sum over all final
states.

the same as in DIS — left panel of the same figure. Moreover, the momentum-scale dependence of
these PDFs is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [12–14] evolu-
tion equation, so that once determined at an initial scale, they can be evolved in perturbative QCD
to any desired reference momentum to confront theoretical predictions with the experimental data
using the appropriate anomalous dimensions (i.e., splitting functions). A large set of PDFs has been
extracted from global analysis of the existing data, from the low-momentum to the Large Hadron
Collider (LHC) regime, but this procedure depends on the accuracy of the process-dependent pertur-
batively calculated short-distance part Hµ⌫a , see [5] for a recent review.

Thus, the factorization formalism [15] of the µ dependence contains a strong predictive power for
scattering o↵ a nucleon (hadron). However, its validity on the partonic level, beyond the collinear
approximation, faces challenges which are related to the appearance of so-called rapidity divergences
ensuing from Wilson lines and their renormalization (see Sec. 3). Theoretically, these e↵ects originate
from the Wilson-line-extended structure of the operator definition of quark (gluon) correlators, as it
becomes obvious from the following TMD field correlator [16–18]

�
q[C]
i j (x, kT ; n) =

Z
d(y · P)d2yT

(2⇡)3 eik·y Dp| ̄ j(y)W(0, y|C) i(0)|p
E
y·n=0

. (8)

One notices the path dependence of this expression encoded in the contour C in the exponential line
integral. It can be resolved by adopting that particular contour which ensures the continuous color
flow in the considered partonic process. As a result, the DY process, shown in the right panel of Fig.
2, contains a sign reversal relative to the SIDIS situation (left panel in Fig. 2), which originates from
the change of a future-pointing Wilson line to one with the opposite orientation as a consequence of
CP invariance and CPT conservation in QCD. This entails the breakdown of universality, because the
factored out nonperturbative part of the SIDIS setup cannot be used without readjustment (sign flip) in
the DY process:

h
f?1Tq

i
DY
= �
h
f?1Tq

i
SIDIS

[19]. This intriguing behavior constitutes in fact the litmus
test of the TMD approach to single spin asymmetries [20] which require that the rescattering of the
struck quark in the field of the remnant hadron generates an interaction phase. This phase would be
forced to vanish by the time-reversal invariance in the absence of the directional dependence of the
Wilson line. Additional phases appear for time-reversal-odd TMD PDFs even at the leading-twist
level when includes into the Wilson lines the Pauli tensor term to account for a correct treatment of
the spin degrees of freedom [21, 22].

v A	direct	probe	of	the	nuclear	quark-gluon	quantum	correlation
v Characterize	the	fundamental	nuclear	QCD	structure
v Phenomenological	applications	to	investigate	properties	of	quark-gluon	plasma
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Multiple	scattering	hard	probe	and	medium	properties can	be	factorized!!!
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Within the framework of a high-twist approach, we calculate the next-to-leading order (NLO)
perturbative QCD corrections to the transverse momentum broadening in semi-inclusive hadron production
in deeply inelastic eþ A collisions, as well as lepton pair production in pþ A collisions. With explicit
calculations of both real and virtual contributions, we verify, for the first time, the factorization theorem at
twist 4 in NLO for the nuclear-enhanced transverse momentum weighted differential cross section and
demonstrate the universality of the associated twist-4 quark-gluon correlation function. We also identify the
QCD evolution equation for the twist-4 quark-gluon correlation function in a large nucleus, which can be
solved to determine the scale dependence of the jet transport parameter in the study of jet quenching.

DOI: 10.1103/PhysRevLett.112.102001 PACS numbers: 12.38.Bx, 12.39.St, 24.85.+p

Multiple scatterings of energetic partons inside cold or
hot nuclear matter play an important role in the study of the
QCD medium in high-energy lepton-nucleus, hadron-
nucleus, and nucleus-nucleus collisions. They lead to
parton energy loss and transverse momentum broadening
[1–4] that are responsible for the observed jet quenching
phenomena in semi-inclusive deeply inelastic scattering
(SIDIS) [5] and high-energy heavy-ion collisions [6].
Though there has been significant progress in the study
of parton energy loss [7,8], radiative correction to trans-
verse momentum broadening [9], and efforts to include the
effect of multiple gluon emission [10–12], the main
theoretical uncertainty in current jet quenching studies
arises from the logarithmic dependence on the kinematic
cutoff in the leading-order (LO) calculation of parton
energy loss [13] and the lack of a proof of factorization
of hard scattering and the medium properties. A complete
next-to-leading order (NLO) calculation of parton energy
loss and an analysis of factorization at NLO are essential for
future quantitative understanding of ever more precise data
on jet quenching from high-energy SIDIS and heavy-ion
collision experiments.
One of the approaches to parton energy loss [14,15] and

transverse momentum broadening [16–22] is based on
high-twist formalism that assumes collinear factorization
[23–25]. Within such an approach, one carries out collinear
expansion of hard parts of multiple scattering amplitudes
and reorganizes the final results in terms of power correc-
tions. Dominant contributions often depend on high-twist
matrix elements of the nuclear state that are enhanced by
the nuclear size. So far, most studies have focused on

double parton scattering and proofs of factorization are
only limited to LO analyses [24].
In this Letter, we will carry out, for the first time, a

complete NLO analysis of the twist-4 contributions to the
transverse momentum weighted cross section of SIDIS. In
particular, we consider contributions of quark rescattering
with partons from another nucleon inside the nucleus. Such
contributions are proportional to the nuclear size A1=3. For
large nucleus A ≫ 1, we neglect other A-independent
higher-twist contributions, for example, any twist-4 frag-
mentation correlation contributions that have no A1=3

enhancement [26]. We will calculate explicitly the real
and virtual corrections up to one-loop order to the twist-4
contributions. We verify the factorization theorem at twist 4
in NLO by demonstrating the cancellation of infrared
divergences and renormalization of the twist-4 parton
correlation functions. Our results not only provide a
complete NLO calculation of the transverse momentum
weighted cross section and, therefore, transverse momen-
tum broadening at twist 4, but also pave the way to the
proof of QCD factorization for higher-twist hard processes
and complete NLO calculation of jet quenching in medium.
In SIDIS of the hadron production off a large nucleus,

eðL1Þ þ AðpÞ → eðL2Þ þ hðlhÞ þ X; (1)

we consider the invariant mass of the virtual photon Q2 ¼
−q2 ¼ −ðL2 − L1Þ2 is large, where p is the average
momentum per nucleon in the nucleus with the atomic
number A and lh is the momentum of a final-state hadron
h. Higher-twist contributions to the cross section from
multiple scatterings are normally suppressed by powers of
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Figure 2. Schematic representation of partonic subprocesses in QCD “embedded” within the experimentally
measured semi-inclusive deep inelastic lepton (l) scattering l + p �! l0 + h + X, where p is the incoming proton
and h represents the detected hadron in the final state (left panel). The right panel shows the analogous situation
for the Drell-Yan process h1+h2 �! �⇤+X �! l+ l0+X, where h1(2) represent incoming hadrons. The thick lines
in both panels denote “eikonalized”, i.e., Wilson-line extended quarks to account for initial (DY) or final (SIDIS)
state interactions. Examples of single gluon exchanges emanating from these lines are also shown. Additional
hard-gluon exchanges have been omitted. In both panels the symbol X represents an inclusive sum over all final
states.

the same as in DIS — left panel of the same figure. Moreover, the momentum-scale dependence of
these PDFs is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [12–14] evolu-
tion equation, so that once determined at an initial scale, they can be evolved in perturbative QCD
to any desired reference momentum to confront theoretical predictions with the experimental data
using the appropriate anomalous dimensions (i.e., splitting functions). A large set of PDFs has been
extracted from global analysis of the existing data, from the low-momentum to the Large Hadron
Collider (LHC) regime, but this procedure depends on the accuracy of the process-dependent pertur-
batively calculated short-distance part Hµ⌫a , see [5] for a recent review.

Thus, the factorization formalism [15] of the µ dependence contains a strong predictive power for
scattering o↵ a nucleon (hadron). However, its validity on the partonic level, beyond the collinear
approximation, faces challenges which are related to the appearance of so-called rapidity divergences
ensuing from Wilson lines and their renormalization (see Sec. 3). Theoretically, these e↵ects originate
from the Wilson-line-extended structure of the operator definition of quark (gluon) correlators, as it
becomes obvious from the following TMD field correlator [16–18]

�
q[C]
i j (x, kT ; n) =

Z
d(y · P)d2yT

(2⇡)3 eik·y Dp| ̄ j(y)W(0, y|C) i(0)|p
E
y·n=0

. (8)

One notices the path dependence of this expression encoded in the contour C in the exponential line
integral. It can be resolved by adopting that particular contour which ensures the continuous color
flow in the considered partonic process. As a result, the DY process, shown in the right panel of Fig.
2, contains a sign reversal relative to the SIDIS situation (left panel in Fig. 2), which originates from
the change of a future-pointing Wilson line to one with the opposite orientation as a consequence of
CP invariance and CPT conservation in QCD. This entails the breakdown of universality, because the
factored out nonperturbative part of the SIDIS setup cannot be used without readjustment (sign flip) in
the DY process:

h
f?1Tq

i
DY
= �
h
f?1Tq

i
SIDIS

[19]. This intriguing behavior constitutes in fact the litmus
test of the TMD approach to single spin asymmetries [20] which require that the rescattering of the
struck quark in the field of the remnant hadron generates an interaction phase. This phase would be
forced to vanish by the time-reversal invariance in the absence of the directional dependence of the
Wilson line. Additional phases appear for time-reversal-odd TMD PDFs even at the leading-twist
level when includes into the Wilson lines the Pauli tensor term to account for a correct treatment of
the spin degrees of freedom [21, 22].
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Figure 2. Schematic representation of partonic subprocesses in QCD “embedded” within the experimentally
measured semi-inclusive deep inelastic lepton (l) scattering l + p �! l0 + h + X, where p is the incoming proton
and h represents the detected hadron in the final state (left panel). The right panel shows the analogous situation
for the Drell-Yan process h1+h2 �! �⇤+X �! l+ l0+X, where h1(2) represent incoming hadrons. The thick lines
in both panels denote “eikonalized”, i.e., Wilson-line extended quarks to account for initial (DY) or final (SIDIS)
state interactions. Examples of single gluon exchanges emanating from these lines are also shown. Additional
hard-gluon exchanges have been omitted. In both panels the symbol X represents an inclusive sum over all final
states.

the same as in DIS — left panel of the same figure. Moreover, the momentum-scale dependence of
these PDFs is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [12–14] evolu-
tion equation, so that once determined at an initial scale, they can be evolved in perturbative QCD
to any desired reference momentum to confront theoretical predictions with the experimental data
using the appropriate anomalous dimensions (i.e., splitting functions). A large set of PDFs has been
extracted from global analysis of the existing data, from the low-momentum to the Large Hadron
Collider (LHC) regime, but this procedure depends on the accuracy of the process-dependent pertur-
batively calculated short-distance part Hµ⌫a , see [5] for a recent review.

Thus, the factorization formalism [15] of the µ dependence contains a strong predictive power for
scattering o↵ a nucleon (hadron). However, its validity on the partonic level, beyond the collinear
approximation, faces challenges which are related to the appearance of so-called rapidity divergences
ensuing from Wilson lines and their renormalization (see Sec. 3). Theoretically, these e↵ects originate
from the Wilson-line-extended structure of the operator definition of quark (gluon) correlators, as it
becomes obvious from the following TMD field correlator [16–18]

�
q[C]
i j (x, kT ; n) =

Z
d(y · P)d2yT

(2⇡)3 eik·y Dp| ̄ j(y)W(0, y|C) i(0)|p
E
y·n=0

. (8)

One notices the path dependence of this expression encoded in the contour C in the exponential line
integral. It can be resolved by adopting that particular contour which ensures the continuous color
flow in the considered partonic process. As a result, the DY process, shown in the right panel of Fig.
2, contains a sign reversal relative to the SIDIS situation (left panel in Fig. 2), which originates from
the change of a future-pointing Wilson line to one with the opposite orientation as a consequence of
CP invariance and CPT conservation in QCD. This entails the breakdown of universality, because the
factored out nonperturbative part of the SIDIS setup cannot be used without readjustment (sign flip) in
the DY process:

h
f?1Tq

i
DY
= �
h
f?1Tq

i
SIDIS

[19]. This intriguing behavior constitutes in fact the litmus
test of the TMD approach to single spin asymmetries [20] which require that the rescattering of the
struck quark in the field of the remnant hadron generates an interaction phase. This phase would be
forced to vanish by the time-reversal invariance in the absence of the directional dependence of the
Wilson line. Additional phases appear for time-reversal-odd TMD PDFs even at the leading-twist
level when includes into the Wilson lines the Pauli tensor term to account for a correct treatment of
the spin degrees of freedom [21, 22].

ü First	time	proof	of	QCD	factorization	theorem	for	double	scattering	at	NLO	
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q Transverse	momentum	broadening	in	eA and	pA collisions

Furthermore, the potential interference between the rescat-
tering and the parton shower, which is responsible for the
large contribution of Sudakov logarithms at low qT , could
complicate the resummation of the logarithms and lead to
even less control on the low qT spectrum. On the other
hand, the averaged transverse momentum square, hq2Ti
defined in Eq. (1), is much more inclusive. If we integrate
over all kinematically allowed qT , the hq2Ti depends on
only one single hard scale, Q , the mass of the vector boson,
and is perturbatively calculable. The large logarithmic
contribution to the q2T distribution from the power of
ln ðQ 2=q2TÞ is suppressed by the q2T weight.

The transverse momentum broadening, !hq2Ti #
hq2TijAB $ hq2Tijhh, which sums over the accumulative ef-
fect of many soft rescattering, is expressed in terms of the
difference of two inclusive and perturbatively calculable
quantities, and is therefore calculable in perturbative QCD
[7,9]. The broadening of the Drell-Yan production of lep-
ton pairs in hadron-nucleus collisions was first studied in
terms of a nonrelativisitic QED model in Ref. [12]. It was
shown that initial-state interactions lead to an increase in
the average of the Drell-Yan dilepton’s transverse momen-
tum square and the increase is proportional to the length of
the nuclear target. The Drell-Yan transverse momentum
broadening was also systematically studied in terms of a
perturbative QCD collinear factorization approach in a
covariant gauge [13] and was further studied in Ref. [14]
in a light-cone gauge. Since we calculate the transverse
momentum broadening of the heavy quarkonium produc-
tion in a covariant gauge in this paper, we briefly review the
perturbative QCD collinear factorization approach and the
covariant gauge derivation of the Drell-Yan broadening in
the rest of this section.

The cross section for the Drell-Yan process in hadron-
nucleus collisions, hðp0Þ þ AðpÞ ! !&ðqÞ½! lþ l$ ( þ X,
where q, p0, p are the four momentum of the virtual
photon, the incoming hadron, and the nucleus (per nu-
cleon) with atomic weight A, respectively, can be expanded
in terms of contributions with a different number of re-
scattering,

"hA ¼ "S
hA þ "D

hA þ . . . (2)

with superscript S for single scattering, D for double
scattering, etc. A single hard scattering is localized in
space and time, and is unlikely to provide the target length
(or the A1=3-type nuclear size) enhancement to the cross
section, although it can get a weaker nuclear dependence to
the cross section from nuclear parton distributions [7]. The
leading contribution to the broadening of the dilepton’s
transverse momentum square comes from the double scat-
tering [13],

!hq2TiDY *
Z
dq2Tq

2
T

d"D
hA

dQ 2dq2T

!
d"hA

dQ 2 ; (3)

with the inclusive Drell-Yan cross section given by

d"hA

dQ 2 * d"S
hA

dQ 2 * A
X

q

Z
dx0# "q=hðx0Þ

Z
dx#q=AðxÞ

d"̂q "q

dQ 2 ;

(4)

where A is the atomic weight of the nucleus,
P
q runs over

all quark and antiquark flavors, # "q=h and #q=A represent
the hadron and nuclear partonic distribution functions,
respectively, and d"̂q "q=dQ

2 is the lowest partonic q "q
annihilation cross section to a lepton pair of invariant
mass Q . In Eq. (4) and the rest of this paper, we suppress
all dependence on the factorization and renormalization
scales. In Fig. 1, we sketch the leading order Feynman
diagram that contributes to the double scattering cross
section, d"D

hA. As shown in Fig. 1, an antiquark of momen-
tum x0p0 from the incoming hadron scatters off a gluon
from the nucleus (indicated by the bottom blob) before it
annihilates with a quark from the nucleus to form a vector
boson of large invariant mass, Q , which then decays into a
lepton pair. The interference diagrams, that have both
gluons in the same side of the final-state cut (the dashed
line), do not contribute to the broadening in a covariant
gauge calculation [13], while they are very important in the
light-cone gauge calculation [14]. It is clear from the
diagram that the momentum of the observed vector boson
is only sensitive to the total momentum from the nucleus,
which is equal to a sum of the gluon and quark momentum.
Therefore, the gluon (or quark) momentum in the scatter-
ing amplitude (the left of the dashed line) is not necessary
to be equal to the gluon (or quark) momentum on the right
of the final-state cut. This is a consequence of the fact that
there could be an arbitrary momentum flow from the
nucleus through the quark line, the internal antiquark
line, and back to the nucleus from the gluon line without
changing both initial and final state. To drive the double
scattering contribution to the cross section, we need to
integrate over this loop momentum for both the amplitude
and complex conjugate of the amplitude, or equivalently,
the momentum flows through those two gluons in Fig. 1.
The internal antiquark propagator following the gluon
rescattering can be very large if the gluon momentum is
very soft, and it can actually diverge if the gluon momen-

x'p'x'p'

(x-x )p+k

x p x p2

2 T1 T

x p

(x-x )p+k

1

FIG. 1. Lowest order double scattering Feynman diagram that
contributes to the broadening of Drell-Yan transverse momentum
distribution, which shows an antiquark of momentum x0p0 of
incoming hadron scatters off a gluon of a nucleus (the bottom
blob) before it annihilates a quark to produce a vector boson.
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Similar to Fig. 2, the leading order double scattering
diagrams for producing a heavy quark pair are sketched in
Fig. 4 for quark-antiquark annihilation subprocesses, and
in Fig. 5 for gluon-gluon fusion subprocesses, respectively.
The blob in the quark-antiquark annihilation subprocess in
Fig. 4 is given by the diagram in Fig. 3(a), and the blob in
the gluon-gluon fusion subprocess in Fig. 5 is given by a
sum of the three diagrams in Fig. 3(b).

In CEM, the transverse momentum broadening of a
heavy quarkonium is equal to the transverse momentum
broadening of the parent heavy quark pair, since the tran-
sition probability from a heavy quark pair to a bound
quarkonium is given by a constant, FQ !Q!H . We use the

same method reviewed in the last section to calculate the
transverse momentum broadening of the heavy quark pairs.
Similar to Eq. (7) in the Drell-Yan case, we have

Z
dq2Tq

2
T

d!D
hA!Q !Q

dQ2dq2T
¼

X

q

Z
dx0" !q=hðx0Þ

Z
dxdx1dx2½TðIÞ

Fqðx; x1; x2; pÞH ðIÞ
q !q!Q !Q

ðx; x1; x2; p; q; x0p0Þ

þ TðFÞ
Fq ðx; x1; x2; pÞH ðFÞ

q !q!Q !Q
ðx; x1; x2; p; q; x0p0Þ&

þ
Z
dx0"g=hðx0Þ

Z
dxdx1dx2½TðIÞ

FFðx; x1; x2; pÞH ðIÞ
gg!Q !Q

ðx; x1; x2; p; q; x0p0Þ

þ TðFÞ
FF ðx; x1; x2; pÞH ðFÞ

gg!Q !Q
ðx; x1; x2; p; q; x0p0Þ&; (17)

where the superscripts, ðIÞ and ðFÞ indicate the initial- and final-state rescattering, respectively, and the matrix element TðIÞ
Fq

is given in Eq. (8). TðIÞ
FF is given by

TðIÞ
FFðx; x1; x2; pÞ ¼

Z dy'

2#

dy'1
2#

dy'2
2#

eix1p
þ y'1 eiðx' x1Þp

þ y' e' iðx' x2Þp
þ y'2 hpAjF$

þ ðy'2 ÞF!þ ð0ÞFþ
!ðy'1 ÞFþ $ðy' ÞjpAi: (18)

The matrix elements with final-state rescattering, TðFÞ
Fq and

TðFÞ
FF , have the same expressions as corresponding matrix

elements with initial-state rescattering, since the field op-
erators in the definition of the multiparton matrix elements
in the collinear factorization approach commute on the
light-cone [31].

The partonic parts, H ðI;FÞ
q !q!Q !Q

, are given by the Feynman

diagrams in Fig. 4 with the quark line from hadron (top)
traced with ð% ( p0Þ=2, the quark line from nucleus (bot-
tom) traced with ð% ( pÞ=2, and gluon lines contracted with

p$p&. The diagram with initial-state rescattering in Fig. 4

(a) contributes to H ðIÞ
q !q!Q !Q

as

H ðIÞ
q !q!Q !Q

¼ H ð4aÞ
q !q!Q !Q

¼ 8#2$s
N2
c ' 1

CF

!
1

2#

1

x1 ' x ' i'

1

x2 ' x þ i'

"

)
d!̂q !q!Q !Q

dQ2 ; (19)

where the lowest order partonic cross section from q !q

(a) (b)

FIG. 3. Lowest order Feynman diagram for light quark-antiquark annihilation (a) and for gluon-gluon fusion to a pair of heavy quark.

(a)

(b) (c) (d) (e)

FIG. 4. Leading order double scattering diagrams for q !q! Q !Q: initial-state double scattering (a), and final-state double
scattering (b), (c), (d), and (e).
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superscript ~I! represents the initial state interaction, in order
to distinguish from the similar four-parton correlation func-
tion defined in Eq. ~1a!. More discussion on the relation
between Tq/A(x) and Tq/A

(I) (x) will be given in Sec. IV.
Combining Eqs. ~6!, ~11!, and ~28!, we obtain the nuclear

enhancement of average Drell-Yan transverse momentum at
leading order in as :

D^qT
2&5S 4p2as

3 D(q eq
2E dx8f q̄/h~x8!Tq/A

~I ! ~t/x8!/x8

(
q
eq
2E dx8 f q̄/h~x8!fq/A~t/x !/x8

.

~31!

III. JET BROADENING IN DEEPLY INELASTIC
SCATTERING

Consider the jet production in the deeply inelastic lepton-
nucleus scattering, e(k1)1A(p)!e(k2)1jet(l)1X . k1
and k2 are the four momenta of the incoming and the outgo-
ing leptons, respectively, and p is the momentum per nucleon
for the nucleus with the atomic number A . With l being the
observed jet momentum, we define the averaged jet trans-
verse momentum square as

^lT
2&eA5E dlT

2 lT
2 dseA

dxBdQ2dlT
2Y dseA

dxBdQ2 , ~32!

where xB5Q2/(2p•q), q5k12k2 is the momentum of the
virtual photon, and Q252q2. The jet transverse momentum
lT depends on our choice of the frame. We choose the Breit
frame in the following calculation. Similar to the Drell-Yan

transverse momentum spectrum, ds/dQ2dqT
2 , the jet trans-

verse momentum spectrum, ds/dxBdQ2dlT
2 , is sensitive to

the A1/3 type nuclear size effect due to the multiple scatter-
ing. On the other hand, the inclusive DIS cross section
ds/dxBdQ25*dlT

2 ds/dxBdQ2dlT
2 does not have the A1/3

power enhancement. Instead, it has a much weaker A depen-
dence, such as the EMC effect and the nuclear shadowing.
To separate the multiple scattering contribution from the
single scattering, we define the jet broadening as

D^lT
2&[^lT

2&eA2^lT
2&eN. ~33!

Keeping only the contribution from the double scattering,
similar to Eq. ~6!, we have

FIG. 2. Diagrams for DIS: ~a! diagram representing Lmn ; ~b!
diagram representing Wmn.

FIG. 3. Lowest order double scattering contribution to jet broad-
ening: ~a! symmetric diagram; ~b! and ~c!: interference diagrams.
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SIDIS	(LO,	NLO)
Kang,	Wang,	Wang,	Xing	2014

Drell-Yan	(LO,	NLO)
Kang,	Qiu,	Wang,	Xing	2016

Heavy	quarkonium
Initial	state	multiple	scattering

(CEM,	NRQCD)

Similar to Fig. 2, the leading order double scattering
diagrams for producing a heavy quark pair are sketched in
Fig. 4 for quark-antiquark annihilation subprocesses, and
in Fig. 5 for gluon-gluon fusion subprocesses, respectively.
The blob in the quark-antiquark annihilation subprocess in
Fig. 4 is given by the diagram in Fig. 3(a), and the blob in
the gluon-gluon fusion subprocess in Fig. 5 is given by a
sum of the three diagrams in Fig. 3(b).

In CEM, the transverse momentum broadening of a
heavy quarkonium is equal to the transverse momentum
broadening of the parent heavy quark pair, since the tran-
sition probability from a heavy quark pair to a bound
quarkonium is given by a constant, FQ !Q!H . We use the

same method reviewed in the last section to calculate the
transverse momentum broadening of the heavy quark pairs.
Similar to Eq. (7) in the Drell-Yan case, we have

Z
dq2Tq

2
T

d!D
hA!Q !Q

dQ2dq2T
¼

X

q

Z
dx0" !q=hðx0Þ

Z
dxdx1dx2½TðIÞ

Fqðx; x1; x2; pÞH ðIÞ
q !q!Q !Q

ðx; x1; x2; p; q; x0p0Þ

þ TðFÞ
Fq ðx; x1; x2; pÞH ðFÞ

q !q!Q !Q
ðx; x1; x2; p; q; x0p0Þ&

þ
Z
dx0"g=hðx0Þ

Z
dxdx1dx2½TðIÞ

FFðx; x1; x2; pÞH ðIÞ
gg!Q !Q

ðx; x1; x2; p; q; x0p0Þ

þ TðFÞ
FF ðx; x1; x2; pÞH ðFÞ

gg!Q !Q
ðx; x1; x2; p; q; x0p0Þ&; (17)

where the superscripts, ðIÞ and ðFÞ indicate the initial- and final-state rescattering, respectively, and the matrix element TðIÞ
Fq

is given in Eq. (8). TðIÞ
FF is given by

TðIÞ
FFðx; x1; x2; pÞ ¼

Z dy'

2#

dy'1
2#

dy'2
2#

eix1p
þ y'1 eiðx' x1Þp

þ y' e' iðx' x2Þp
þ y'2 hpAjF$

þ ðy'2 ÞF!þ ð0ÞFþ
!ðy'1 ÞFþ $ðy' ÞjpAi: (18)

The matrix elements with final-state rescattering, TðFÞ
Fq and

TðFÞ
FF , have the same expressions as corresponding matrix

elements with initial-state rescattering, since the field op-
erators in the definition of the multiparton matrix elements
in the collinear factorization approach commute on the
light-cone [31].

The partonic parts, H ðI;FÞ
q !q!Q !Q

, are given by the Feynman

diagrams in Fig. 4 with the quark line from hadron (top)
traced with ð% ( p0Þ=2, the quark line from nucleus (bot-
tom) traced with ð% ( pÞ=2, and gluon lines contracted with

p$p&. The diagram with initial-state rescattering in Fig. 4

(a) contributes to H ðIÞ
q !q!Q !Q

as

H ðIÞ
q !q!Q !Q

¼ H ð4aÞ
q !q!Q !Q

¼ 8#2$s
N2
c ' 1

CF

!
1

2#

1

x1 ' x ' i'

1

x2 ' x þ i'

"

)
d!̂q !q!Q !Q

dQ2 ; (19)

where the lowest order partonic cross section from q !q

(a) (b)

FIG. 3. Lowest order Feynman diagram for light quark-antiquark annihilation (a) and for gluon-gluon fusion to a pair of heavy quark.

(a)

(b) (c) (d) (e)

FIG. 4. Leading order double scattering diagrams for q !q! Q !Q: initial-state double scattering (a), and final-state double
scattering (b), (c), (d), and (e).
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§ Dynamical	shadowing	– small	x

3

of the product of operators to be a product of expectation
values of the basic operator units in a nucleon state of
momentum p = PA/A:

⟨PA| Ô0

n
∏

i=1

Ôi |PA⟩ = A ⟨p | Ô0 | p⟩
n
∏

i=1

[

Np ⟨p | Ôi | p⟩
]

,

with the normalization Np = 3/(8πr30mN ). The integrals
∫

dλiθ(λi) = (3r0mN/4)(A1/3 − 1) are taken such that
the nuclear effect vanishes for A = 1. Resumming the
A1/3-enhanced power corrections Eqs. (8), (9) we find:

FA
T (x,Q2) ≈

N
∑

n=0

A

n!

[

ξ2(A1/3 − 1)

Q2

]n

xn dnF (LT)
T (x,Q2)

dnx

≈ AF (LT)
T

(

x+
xξ2(A1/3 − 1)

Q2
, Q2

)

, (10)

FA
L (x,Q2) ≈ AF (LT)

L (x,Q2) +
N
∑

n=0

A

n!

(

4 ξ2

Q2

)

×

[

ξ2(A1/3 − 1)

Q2

]n

xn dnF (LT)
T (x,Q2)

dnx

≈ AF (LT)
L (x,Q2) +

4 ξ2

Q2
FA
T (x,Q2) , (11)

where N is the upper limit on the number of quark-
nucleon interactions and ξ2 represents the characteristic
scale of quark-initiated power corrections to the leading
order in αs

ξ2 =
3παs(Q2)

8 r20
⟨p| F̂ 2(λi) |p⟩ .

In deriving Eqs. (10), (11) we have taken ⟨p| F̂ 2
λ0

|p⟩ ≈

(3r0mN/4)⟨p| F̂ 2(λi) |p⟩ and N ≈ ∞ because the effec-
tive value of ξ2 is relatively small, as shown below.
Eqs. (10), (11) are the main result of this Letter. Im-

portant applications to other QCD processes and ob-
servables that naturally follow from this new approach
are given in [11]. The overall factor A takes into ac-
count the leading dependence on the atomic weight and
the isospin average over the protons and neutrons in the
nucleus is implicit. We emphasize the simplicity of the
end result, which amounts to a shift of the Bjorken x
by ∆x = x ξ2(A1/3 − 1)/Q2 with only one parameter
ξ2 ∝ limx→0 xG(x,Q2). In the following numerical eval-
uation we use the lowest order CTEQ6 PDFs [12].
Fig. 2 shows a point by point in (x,Q2) calculation

of the process dependent modification to F2(A)/F2(D)
(per nucleon) in the shadowing x < 0.1 region compared
to NA37 and E665 data [13, 14]. We find that a value
of ξ2 = 0.09 − 0.12 GeV2, which is compatible with the
range from previous analysis [15] of Drell-Yan transverse
momentum broadening (ξ2 ∼ 0.04 GeV2) and momen-
tum imbalance in dijet photoproduction (ξ2 ∼ 0.2 GeV2),
makes our calculations consistent with the both x- and
A-dependence of the data. Our calculations might have
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FIG. 2: All-twist resummed F2(A)/F2(D) calculation from
Eqs. (10), (11) versus CERN-NA37 [14] and FNAL-E665 [13]
data on DIS on nuclei. The band corresponds to the choice
ξ2 = 0.09 − 0.12 GeV2. Data-Theory, where ∆D−T is com-
puted for the set presented by circles, also shows comparison
to the EKS98 scale-dependent shadowing parametrization [2].

overestimated the shift in the region x close to xN where
the N ≈ ∞ should fail [11]. In Fig. 2, we impose
Q2 = m2

N for virtualities smaller than the nucleon mass,
below which high order corrections in αs(Q) need to
be included and the conventional factorization approach
might not be valid. Our result is comparable to the
EKS98 scale-dependent parametrization [2] of existing
data on the nuclear modification to FA

2 (x,Q2), as seen in
the ∆D−T = Data−Theory panels of Fig. 2. We empha-
size, however, that the physical interpretation is different:
in [2] the effect is attributed to the modification of the
input parton distributions at µ0 = 1.5 GeV in a nucleus
and its subsequent leading twist scale dependence. In
contrast, our resummed QCD power corrections to the
structure functions systematically cover higher twist for
all values of Q ≥ µ0.

With ξ2 fixed, Fig. 3 shows the predicted Q2 depen-
dence of F2(Sn)/F2(C). The Q2 behavior of our result,

Coherent multiple	scattering

Summing	nuclear	enhanced	
multiple	scattering

Qiu,	Vitev ,	PRL,	2004
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q Parametrization	of	jet	transport	coefficient

�hp2T i ⇠ Tqg/gg(x, 0, 0)
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§ Considering	a	large	and	loosely	bound	nucleus
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dependence of the nuclear medium property.
Transverse momentum broadening and q̂. The non-

perturbative but universal q̂ can be accessed in mea-
surements of transverse momentum broadening. Taking
SIDIS as an example, the transverse momentum broad-
ening is defined as �hp2T i = hp2T ieA � hp2T iep, with pT
the transverse momentum of final state hadron. The av-
eraged transverse momentum square is an inclusive ob-
servable and perturbatively calculable as the transverse
momentum is integrated over. The first nontrivial lead-
ing contribution comes from final state double scattering
manifested as twist-4 power corrections to the cross sec-
tion [34]

�hp2T i =
4⇡2↵sz2h

Nc

P
q Tqg(xB , 0, 0, µ2)Dh/q(zh, µ

2)
P

q fq/A(xB , µ2)Dh/q(zh, µ2)
(1)

where fq/A(xB , µ2) is the parton distribution function
with xB the Bjorken-x, and Dh/q(zh, µ

2) is the hadron
fragmentation function with zh the momentum fraction.
The twist-4 quark-gluon correlation function is defined
as

Tqg(x, 0, 0) =

Z
dy�

2⇡
eixp

+y�
Z

dy�1 dy
�
2

4⇡
✓(y�2 )✓(y

�
1 � y�)

⇥ hA| ̄q(0)�
+F+

↵ (y�2 )F
↵+(y�1 ) q(y

�)|Ai
(2)

which contains the fundamental properties of the nuclear
medium as probed by a propagating quark. Under the
approximation of a large and loosely bound nucleus, one
can neglect the momentum and spatial correlations of
two nucleons. Thus Tqg(x, 0, 0, µ2) can be e↵ectively fac-
torized as

Tqg(x, 0, 0, µ
2) ⇡ Nc

4⇡2↵s
fq/A(x, µ

2)q̂(x, µ), (3)

where q̂(x, µ) is the quark jet transport coe�cient.
In Drell-Yan process, the transverse momentum broad-

ening of final state dilepton is caused purely by initial
state multiple scattering. The final expression analo-
gous to Eq. (1), except that one replaces the fragmenta-
tion functions with parton distribution functions for the
beam proton [34, 35]. In heavy quarkonium production
in pA collisions, the transverse momentum broadening
receives contributions not only from the initial state mul-
tiple scattering analogy to that in Drell-Yan process, but
also the final state double scattering between the heavy
quark pair and nuclear medium. Details of the calcula-
tion can be found in both the color evaporation model
and NRQCD e↵ective theory [36, 37]. Last but not least,
resummed power corrections to the DIS nuclear struc-
ture functions has been calculated systematically in the
framework of the pQCD factorization approach with re-
summed high twist contributions [31], it is found that the
shadowing e↵ect as observed in experiment is also sensi-
tive to the value of q̂, therefore provide us another type
of good observable to probe the nuclear medium prop-
erty. All these calculations are performed within the

same collinear factorization framework, i.e., high-twist
expansion.

Global analysis and results. The idea of global anal-
ysis is to extract the nonperturbative functions entering
the factorized cross sections. This technique has been
extensively used to explore the nucleon 1D and 3D struc-
tures, in which parametrized forms of the nonperturba-
tive functions are assumed for the global analysis. Sim-
ilarly, we adopt the following flexible functional form to
parametrize q̂

q̂(x, µ2) = q̂0x
↵(1� x)� ln�(µ2) (4)

with 4 free parameters q̂0, ↵, �, � to be fitted to exper-
imental data. We expect q̂ to be proportional to ln(Q2)
from the parton shower leading to the hard collision. In
small-x region, we expect q̂ to be proportional to the
saturation scale / x�1/3. We use the MINUIT package
to perform a global fit of the q̂ from world data. To
be consistent with the region of applicability of collinear
factorization formalism, we exclude the data points with
Q2 < 1.
In this analysis, due to the lack of complete NLO cal-

culations of transverse momentum broadening in eA and
pA collisions, we stick on LO of pQCD results, where only
diagonal twist-4 matrix elements are involved. We leave
those involving o↵-diagonal twist-4 matrix element, such
as energy loss calculations in eA [38] and pA collisions
[39], for future works when more data is available for rea-
sonable constraint. We don’t consider the evolution e↵ect
of q̂ as it is not fully determined yet. For nuclear gluon-
gluon correlation function involved in heavy quarkonium
production, we assume the same parametrization form
as in Eq. (4), notice that the color factor represent-
ing quark-medium and gluon-medium interaction is re-
vealed in the hard part coe�cient of transverse momen-
tum broadening. As for the proton PDFs, We use CT14
at LO with nf = 3 active quark flavors [40]. As for
fragmentation functions, we use DSS [41]. As for heavy
quarkonium, we set mc = 1.5 GeV, mb = 4.5 GeV, and
employ the long distance matrix elements as in Refs.
[42, 43]. We set the renormalization and factorization
scale the same µ2

r = µ2
f = Q2, with Q the invariant mass

of the virtual photon or heavy quarkonium mass. The
theoretical uncertainties due to leading twist nonpertur-
bative functions are largely cancel as the transverse mo-
mentum broadening is a ratio of transverse momentum
weighted and the total cross sections.
We now present results for our global analysis of SIDIS,

DY, Heavy quarkonium in pA and structure function in
eA. In table I, we list all the data sets that are included
in our analysis as well as their respective �2 values with
4 free parameters in the fit. In total we have fitted 210
data points from 7 data sets. Shown in Fig. 1 is the
kinematic reach in existing data. The capability to probe
q̂ is mainly located in the intermediate xB and Q2region,
Future measurements with wider kinematic coverage is
indispensable for a complete understanding of medium
property.

2

In this letter, we will carry out, for the first time, a com-
bined fit of world data on transverse momentum broad-
ening in SIDIS [21], DY dilepton and heavy quarkonium
production in proton-nucleus (pA) collisions [22–28]. No-
tice that the dynamical shadowing e↵ect as observed in
electron-nucleus (eA) deep inelastic scattering (DIS) is
also sensitive to the value of q̂ [11], therefore we include
Fermilab E665 data [33, 34] into our analysis as well.
From our global analysis presented below, we provide the
first quantitative evidence of the universality and scale
dependence of the nuclear medium property.

Transverse momentum broadening and q̂. The non-
perturbative but universal q̂ can be accessed in mea-
surements of transverse momentum broadening. Taking
SIDIS as an example, the transverse momentum broad-
ening is defined as �hp2T i = hp2T ieA�hp2T iep, with pT the
transverse momentum of final state hadron and hp2T ieA/ep

the average transverse momentum in eA (or ep) colli-
sions. The averaged transverse momentum square is an
inclusive observable and perturbatively calculable as the
transverse momentum is integrated over. The first non-
trivial leading contribution comes from final state double
scattering manifested as twist-4 power corrections to the
cross section [35]

�hp2T i =
4⇡2↵sz2h

Nc

P
q Tqg(xB , 0, 0, µ2)Dh/q(zh, µ

2)
P

q fq/A(xB , µ2)Dh/q(zh, µ2)
,

(1)

where fq/A(xB , µ2) is the parton distribution function
with xB the Bjorken-x, and Dh/q(zh, µ

2) is the hadron
fragmentation function with zh the momentum fraction.
The twist-4 quark-gluon correlation function is defined
as

Tqg(x, 0, 0) =

Z
dy�

2⇡
eixp

+y�
Z

dy�1 dy
�
2

4⇡
✓(y�2 )✓(y

�
1 � y�)

⇥ hA| ̄q(0)�
+F+

↵ (y�2 )F
↵+(y�1 ) q(y

�)|Ai ,
(2)

which contains the fundamental properties of the nuclear
medium as probed by a propagating quark. Under the
approximation of a large and loosely bound nucleus, one
can neglect the momentum and spatial correlations of
two nucleons. Thus Tqg(x, 0, 0, µ2) can be e↵ectively fac-
torized as

Tqg(x, 0, 0, µ
2) ⇡ Nc

4⇡2↵s
fq/A(x, µ

2)q̂(x, µ), (3)

where q̂(x, µ) is the quark jet transport coe�cient.
In Drell-Yan process, the transverse momentum broad-

ening of final state dilepton is caused purely by initial
state multiple scattering. The final expression analo-
gous to Eq. (1), except that one replaces the fragmen-
tation functions with parton distribution functions for
the beam proton [35, 36]. In heavy quarkonium produc-
tion in pA collisions, the transverse momentum broaden-
ing receives contributions not only from the initial state

multiple scattering analogy to that in Drell-Yan process,
but also the final state double scattering between the
heavy quark pair and nuclear medium. Details of the
calculation and final expressions can be found in [37, 38]
for both the color evaporation model and non-relativistic
QCD (NRQCD) e↵ective theory.
Last but not least, resummed power corrections to the

DIS nuclear structure functions F2(xB , Q2) has been cal-
culated systematically in the framework of the pQCD
factorization approach with resummed high twist contri-
butions [11]. It is found that the shadowing e↵ect as
observed in experiment is also sensitive to the value of q̂,
therefore provide us with another type of good observ-
able to probe the nuclear medium property. All these
calculations are performed within the same collinear fac-
torization framework, i.e., high-twist expansion.

Global analysis and results. The idea of global anal-
ysis is to extract the nonperturbative functions entering
the factorized cross sections. This technique has been
extensively used to explore the nucleon 1D and 3D struc-
tures, in which parametrized forms of the nonperturba-
tive functions are assumed for the global analysis. Sim-
ilarly, we adopt the following flexible functional form to
parametrize q̂,

q̂(x, µ2) = q̂0 ↵s(µ
2)x↵(1� x)� ln�(µ2/µ2

0) , (4)

where ↵s(µ2) is introduced to o↵set the strong cou-
pling constant ↵s in the denominator of Eq. (3), and
µ0 = 1 GeV is introduced to make the argument in the
logarithm dimensionless. Thus, we have 4 free parame-
ters q̂0, ↵, �, and � to be fitted to experimental data.
The term ln�(µ2/µ2

0) represents any deviation in the
QCD evolution of Tqg(x, 0, 0, µ2) from that of fq/A(x, µ

2),
see Eq. (3), and thus mimics the scale-dependence of q̂
to be determined from the experimental data. In small-x
region, we expect q̂ to be proportional to the gluon satu-
ration scale Q2

s / x�1/3 [39] and thus the factor x↵ in q̂.
Finally in the large-x region, power corrections could also
be di↵erent [40, 41] and thus we have the factor (1�x)� .
We use the MINUIT package [42] to perform a global fit
of the q̂ from world data. To be consistent with the re-
gion of applicability of collinear factorization formalism,
we include only the data points with Q2 > 1 GeV2.

In this analysis, due to the lack of complete NLO cal-
culations of transverse momentum broadening in eA and
pA collisions, we stick to LO of pQCD results, where
only diagonal twist-4 matrix elements are involved. We
leave those involving o↵-diagonal twist-4 matrix element,
such as energy loss calculations in eA [43] and pA col-
lisions [44], for future works when more data is avail-
able for reasonable constraints. As for the proton PDFs,
we use CT14 at LO with nf = 3 active quark flavors
[45]. As for fragmentation functions, we use the DSS
parametrization [46]. As for heavy quarkonium, we set
heavy quark mass mc = 1.5 GeV, mb = 4.5 GeV, and
employ the NRQCD long-distance matrix elements as in

§ Kinematic	and	scale	dependence	of	qhat

normalization Small-x	saturation
Scale	dependence

Large-x	power	correction
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Global	analysis	of	the	world	data

q Non-universality	of	medium	property	(jet	transport	parameter)	?
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In this letter, we will carry out, for the first time, a com-
bined fit of world data on transverse momentum broad-
ening in SIDIS [21], DY dilepton and heavy quarkonium
production in proton-nucleus (pA) collisions [22–28]. No-
tice that the dynamical shadowing e↵ect as observed in
electron-nucleus (eA) deep inelastic scattering (DIS) is
also sensitive to the value of q̂ [11], therefore we include
Fermilab E665 data [33, 34] into our analysis as well.
From our global analysis presented below, we provide the
first quantitative evidence of the universality and scale
dependence of the nuclear medium property.

Transverse momentum broadening and q̂. The non-
perturbative but universal q̂ can be accessed in mea-
surements of transverse momentum broadening. Taking
SIDIS as an example, the transverse momentum broad-
ening is defined as �hp2T i = hp2T ieA�hp2T iep, with pT the
transverse momentum of final state hadron and hp2T ieA/ep

the average transverse momentum in eA (or ep) colli-
sions. The averaged transverse momentum square is an
inclusive observable and perturbatively calculable as the
transverse momentum is integrated over. The first non-
trivial leading contribution comes from final state double
scattering manifested as twist-4 power corrections to the
cross section [35]

�hp2T i =
4⇡2↵sz2h

Nc

P
q Tqg(xB , 0, 0, µ2)Dh/q(zh, µ

2)
P

q fq/A(xB , µ2)Dh/q(zh, µ2)
,

(1)

where fq/A(xB , µ2) is the parton distribution function
with xB the Bjorken-x, and Dh/q(zh, µ

2) is the hadron
fragmentation function with zh the momentum fraction.
The twist-4 quark-gluon correlation function is defined
as

Tqg(x, 0, 0) =

Z
dy�

2⇡
eixp

+y�
Z

dy�1 dy
�
2

4⇡
✓(y�2 )✓(y

�
1 � y�)

⇥ hA| ̄q(0)�
+F+

↵ (y�2 )F
↵+(y�1 ) q(y

�)|Ai ,
(2)

which contains the fundamental properties of the nuclear
medium as probed by a propagating quark. Under the
approximation of a large and loosely bound nucleus, one
can neglect the momentum and spatial correlations of
two nucleons. Thus Tqg(x, 0, 0, µ2) can be e↵ectively fac-
torized as

Tqg(x, 0, 0, µ
2) ⇡ Nc

4⇡2↵s
fq/A(x, µ

2)q̂(x, µ), (3)

where q̂(x, µ) is the quark jet transport coe�cient.
In Drell-Yan process, the transverse momentum broad-

ening of final state dilepton is caused purely by initial
state multiple scattering. The final expression analo-
gous to Eq. (1), except that one replaces the fragmen-
tation functions with parton distribution functions for
the beam proton [35, 36]. In heavy quarkonium produc-
tion in pA collisions, the transverse momentum broaden-
ing receives contributions not only from the initial state

multiple scattering analogy to that in Drell-Yan process,
but also the final state double scattering between the
heavy quark pair and nuclear medium. Details of the
calculation and final expressions can be found in [37, 38]
for both the color evaporation model and non-relativistic
QCD (NRQCD) e↵ective theory.
Last but not least, resummed power corrections to the

DIS nuclear structure functions F2(xB , Q2) has been cal-
culated systematically in the framework of the pQCD
factorization approach with resummed high twist contri-
butions [11]. It is found that the shadowing e↵ect as
observed in experiment is also sensitive to the value of q̂,
therefore provide us with another type of good observ-
able to probe the nuclear medium property. All these
calculations are performed within the same collinear fac-
torization framework, i.e., high-twist expansion.

Global analysis and results. The idea of global anal-
ysis is to extract the nonperturbative functions entering
the factorized cross sections. This technique has been
extensively used to explore the nucleon 1D and 3D struc-
tures, in which parametrized forms of the nonperturba-
tive functions are assumed for the global analysis. Sim-
ilarly, we adopt the following flexible functional form to
parametrize q̂,

q̂(x, µ2) = q̂0 ↵s(µ
2)x↵(1� x)� ln�(µ2/µ2

0) , (4)

where ↵s(µ2) is introduced to o↵set the strong cou-
pling constant ↵s in the denominator of Eq. (3), and
µ0 = 1 GeV is introduced to make the argument in the
logarithm dimensionless. Thus, we have 4 free parame-
ters q̂0, ↵, �, and � to be fitted to experimental data.
The term ln�(µ2/µ2

0) represents any deviation in the
QCD evolution of Tqg(x, 0, 0, µ2) from that of fq/A(x, µ

2),
see Eq. (3), and thus mimics the scale-dependence of q̂
to be determined from the experimental data. In small-x
region, we expect q̂ to be proportional to the gluon satu-
ration scale Q2

s / x�1/3 [39] and thus the factor x↵ in q̂.
Finally in the large-x region, power corrections could also
be di↵erent [40, 41] and thus we have the factor (1�x)� .
We use the MINUIT package [42] to perform a global fit
of the q̂ from world data. To be consistent with the re-
gion of applicability of collinear factorization formalism,
we include only the data points with Q2 > 1 GeV2.

In this analysis, due to the lack of complete NLO cal-
culations of transverse momentum broadening in eA and
pA collisions, we stick to LO of pQCD results, where
only diagonal twist-4 matrix elements are involved. We
leave those involving o↵-diagonal twist-4 matrix element,
such as energy loss calculations in eA [43] and pA col-
lisions [44], for future works when more data is avail-
able for reasonable constraints. As for the proton PDFs,
we use CT14 at LO with nf = 3 active quark flavors
[45]. As for fragmentation functions, we use the DSS
parametrization [46]. As for heavy quarkonium, we set
heavy quark mass mc = 1.5 GeV, mb = 4.5 GeV, and
employ the NRQCD long-distance matrix elements as in
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Test	as	usual:

Inconsistent	qhat from	different	process.
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q Global	analysis	of	world	data
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Phenomenological	extension	to	QGP
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q Jet	transport	in	hot	dense	medium
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Summary
q Incoherent	multiple	scattering

v Nuclear	enhancement	in	backward	rapidity	in	pA at	RHIC	and	LHC

q Parton	energy	loss	in	cold	nuclear	matter
vMedium	induced	gluon	radiation	leads	to	parton eloss in	eA
vMedium	induced	flavor	conversion	leads	to	k- enhancement	in	

large	xb and	z	region

q Transverse	momentum	broadening
v Global	analysis	on	qhat from	world	data	(SIDIS,	DIS,	DY,	heavy	

quarkonium)
v First	time	quantitative	evidence	of	the	universality	of	cold	nuclear	

medium	property

Thanks	for	your	attention!


