QCD物理暨国家自然科学基金重大项目交流会

Charge dependent flow and the search for the chiral magnetic wave at RHIC and LHC

Qiye Shou 寿齐烨

Fudan University

July 2019

. . .

- In non-central heavy-ion collisions an unprecedented intense magnetic field ($\sim 10^{18}$ G) is generated by the movement of the spectator protons
- In the presence of such magnetic field, several anomalous chiral effects, such as Chiral Magnetic Effect,
- Chiral Magnetic Wave, etc, have been theorized to be created in QGP Possible local CP violation in strong interactions The novel topological nature of the QCD vacuum 0

Chiral magnetic wave

Y. Burnier, D. E. Kharzeev, J. Liao, and H.-U. Yee, Phys. Rev. Lett. 107, 52303 (2011).

$$N_{+}(\phi) - N_{-}(\phi) = (\bar{N}_{+} - \bar{N}_{-})[1 - r\cos(2\phi)] +$$

$$\frac{dN_{\pm}}{d\phi} = N_{\pm} [1 + 2v_2 \cos(2\phi)]$$
$$\approx \bar{N}_{\pm} [1 + 2v_2 \cos(2\phi) \mp A_{\pm} r \cos(2\phi)]$$

$$v_2^{\pm} = v_2 \mp \frac{rA_{\pm}}{2}$$

Chiral magnetic wave

Y. Burnier, D. E. Kharzeev, J. Liao, and H.-U. Yee, Phys. Rev. Lett. 107, 52303 (2011).

ALICE, CMS and STAR experiments put efforts into such studies for more than a decade

Negative binomial distr.

Collision systems and energies

- Pb-Pb, p-Pb, Xe-Xe \rightarrow
- Au+Au, p(d)+Au, U+U \rightarrow

Particle of interest

- Inclusive charged particles

2.76 TeV, 5.02 TeV, 5.44 TeV at LHC • BES (7-62 GeV), 200 GeV, 193 GeV at RHIC

• Identified particles: π , K, p, heavy-flavour, etc at various kinematic windows (p_T , η , etc)

LHC-ALICE

LHC-CMS

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER

Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

RHIC-STAR

Experimental measurement of Ach dependent v₂

• A clear linear dependence between v_2 and A_{ch} is observed in all experiments

Search for the CMW at RHIC and LHC

Slope of v₂ vs Centrality

• At GeV scale, data are consistent with the qualitative expectations from the CMW picture, and the slope parameter follows a centrality dependence qualitatively similar to the theoretical calculations of the CMW At TeV scale, the slopes remain the same, however, with weaker centrality dependence

Possible background — Local Charge Conservation

A_{ch} decrease mean $p_T(-) < \text{mean } p_T(+)$ $V_2(-) < V_2(+)$

A_{ch} increase mean $p_T(-) > mean p_T(+)$ $V_2(-) > V_2(+)$

A. Bzdak, P. Bożek / Physics Letters B 726 (2013) 239–243

Search for the CMW at RHIC and LHC

Possible background — Local Charge Conservation

Local charge conservation (LCC) at freeze-out, when folded with the characteristic shape of $v2(\eta)$ and $v_2(p_T)$ at RHIC energies, can be manifested in the measurement of v_2 , v_3 and different η coverage

How to examine LCC?

- Check $< p_T > v_S A_{ch}$
- Investigate the v₃ slope \bullet

$\Delta V_3 / \Delta V_2 \sim V_3 / V_2$

>vs A_{ch}

STAR

• In a widened p_T coverage, the dependence between $< p_T > vs A_{ch}$ get stronger

Search for the CMW at RHIC and LHC Q. Shou (Fudan Univ.)

Slope of v₂ and p_T vs centrality (N_{trk})

• To remove the contamination from $< p_T > vs A_{ch}$, one should keep the p_T coverage as low as possible

Experimental measurement of Ach dependent v₃

STAR

• The linear dependence between v_3 and A_{ch} gets weaker at STAR, however, remains unchanged at CMS

Slope of v₃ vs centrality

- 0

• For STAR data, the normalized slopes of v_2 and v_3 are basically consistent with each other at semi-central collisions, however, behave differently in most central and peripheral collisions, which can be explained by the non-flow contribution (expected to be presented at QM19)

Consistent with each other in CMS data

Slope vs centrality in small system collisions

The slopes in pAu and dAu are consistent with zero at STAR however, in a wider p_T range

Similar slopes (positive) are observed in pPb collisions at both CMS and ALICE,

Possible background – Isospin+hydrodynamics

"... We demonstrate that the STAR results can be understood within the standard viscous hydrodynamics without invoking the CMW..."

"... the slope r for the kaons should be negative, in contrast to the pion case, and the magnitude is expected to be larger... Note that in these predictions are integrated over $0 \leq p_T < \infty$. In order to properly test them, a wider p_T coverage is necessary..."

 $\Delta v^2 \propto -\mu_1$; $A_{ch} \propto -\mu_1$ (assumed); => $\Delta v^2 \propto A_{ch}$

Hydrodynamics study suggests that, with wider p_T coverage, K slope should be opposite to π slope with larger magnitude, since

 $v_2(\pi^+) < v_2(\pi^-), v_2(K^+) > v_2(K^-)$

Y. Hatta et al. / Nuclear Physics A 947 (2016) 155–160

Measurements with identified K and p

Centrality dependence of slope parameters for K behave

Intercepts for kaons K negative, while intercepts for pions are

The p slopes are smaller than that of pions and kaons, except in the most peripheral collisions. Such discrepancy motives future

- 0
- The clear linear relationship between v_2 and A_{ch} , usually considered as a possible \bigcirc evidence, is observed at all experiments, however, is this a signal?
- The background effect of LCC is examined with different measurements \bigcirc
- The isospin effect gives the wrong prediction. 0
- More inputs from theoretical experts are expected. Any other background source?
- Any other observable besides the slope?
- More updated experimental results will be presented at QM19

The existence of Chiral Magnetic Wave has been searched for at ALICE, CMS and STAR

